Reading and Understanding The US National Grid

The Federal Geographic Data Committee Online Education Program

FGDC-STD-011-2001:
 The US National Grid

Narrated by Talbot Brooks, Director
Center for Interdisciplinary Geospatial Information Technologies
Delta State University

Acknowledgements

This work was completed by The Center for Interdisciplinary Geospatial Information Technologies at Delta State University with the fiscal support from the Federal Geographic Data Committee National Spatial Data Infrastructure Program 2008 Cooperative Agreements Program (Category 6) and USGS Cooperative Agreement 07ERAG0083.

Additional input and contributions courtesy Tom Terry and Jules McNeff at the Public X/Y Project, the Florida Division of Emergency Management's State Emergency Response Team, Peter Dana and the Geographer's Craft, and the Geospatial Information and Technology Association.

Reading USNG

Before Continuing...

Please visit:
http:// www.fgdc.gov/ usng/ educational-resources/index html
Download the USNG 1:24,000 training map and the USNG Grid Reader documents - you will need Adobe's Free PDF reader to view and print them

Print the training map on regular paper, taking care to ensure that "Print to fit" and "Autorotate and center" options are turned OFF

Print the USNG Grid Reader document on an overhead transparency and cut one of the grid readers out

Finding Our Way

Understanding coordinate systems
Interoperability between GPS and paper maps
How to read and plot US National Grid Coordinates

"Modern" Coordinate Systems: They all started here...

The Royal Observatory

Greenwich, UK

Understanding A Map

A map is a representation of geographic features expressed on a flat surface.
Some mathematical manipulation is required to transition from the globe shape of the Earth to the flat surface of a map. This is done using complex equations and results in what is called a map projection.
The projection process introduces error, such as the distortion of areas and distances, into the resulting map product. Note the differences between Greenland (red arrow) depicted in the globe above and the Mercator Projection map above.

What Is A Coordinate System?

A coordinate system is a means by which a geographic location is measured.

- Two fundamental approaches

Angular displacement (Latitude and Longitude)
Ground or "grid" based coordinates
There are a wide variety of coordinate systems in place today that were designed to meet specific needs (surveying, travel by sea, etc...).
Some coordinate systems were designed to work with specific map projections.
The US National Grid is designed to work with the Mercator Projection.

The Austin Capitol Dome Liberty Star Horizontal Control Station (The star in the hand of the Goddess of Liberty)

Datum	Coordinate System	Coordinates	Units
NAD 83	Geodetic Latitude, Longitude	30:16:28.82 $\mathrm{N}, 07.44: 25.10 \mathrm{~W}$	deg:min:see
NAD-27	Geodetic Latitude, Longitude	30:16:28.03 N, 97:44:24.09 W	degamun:sec
WGS-72	Geodetic Latitude, Longitude	30:16:28.68 N, 97:44:25.75 W	degeminsey
NAD-83	UTM Easting, Northing, Zone	621160.98, 3349893.53 l 4 R	meters
NAD-27	UTM Easting, Northing, Zone	$621193.18,3349688.21$	me ers
NAD-83	Military Grid Reference System	14RPU2116149894	meters
NAD-27	Military Grid Reference System	14RPJ2119349688	meters
NAD-83	State Plane, TX C 4203 Easting, Northing	949465.059, 3070309.475	meters
NAD-27	State Plane, TX C 42033 Easting, Northing	2818560.55, 230591.76	feet
NAD-83	State Plane, TX SC 4204 Easting, Northing	721201.977, 4271229.432	meters
NAD-27	State Plane, TX SC 4204 Easting, Northing	2397741.25, 889749.98	feet
WGS-72	World Geographic Reference Sys tem	FJHA4416	deg. and min.
	VOR-DME Bearing, Distance, VOR D	230.46, 2.271, 114.6 Ch.93 AUS	deg, nmi, id
	Loran-C GRI $7980 \mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ TDs	10990.9,24795.0,47040.8,6,9900.3	microse..
	U.S. Postal Zip Code (5-digits)	78705	

One Location Described by Different Coordinate Systems

Universal Transverse Mercator

Abbreviated UTM and is commonly used in GIS May be used with the North American Datum of 1927 (NAD 27) or the North American Datum of 1983 (NAD 83)

- A datum is best described as the "anchor point" or origin of the coordinate system and is thus a very important piece of information that must be specified when using a coordinate system
Divides earth into zones based on spherical (geographic) coordinate system
- 60 zones total
- The continental US lies between zones 10-19

Each zone is projected in Transverse Mercator

UTM Continued

Each zone is subdivided into smaller blocks based on hemisphere

- Each block is 6° wide by 8° tall
- North-south coordinates are called "Northings"
- Measured in meters
- Southpole is 0, Equator is 10 million

A similar process is used for creating east-west coordinates

- East-west coordinates are called "Eastings"
- Also measured in meters

USNG is based on the UTM coordinate system and uses the same basic principles with an additional subdivision called the $100,000-\mathrm{m}$ square

ESRI Users: Caveat Emptor!!!

- ESRI software treats UTM (and thus USNG) as a projected coordinate system.
ESRI designates zones as only being northern or southern hemisphere and does not break them into 6×8 degree blocks This can be confusing as the letter designation following the number in ESRI software DOES NOT depict the correct zone - choose the correct zone number only

Map Accuracy (National Map Accuracy Standards)

NMAS $=>1: 20,000=90 \%$ of well defined features will be within $1 / 50$ inch on map of true position. USGS 1:24,000 series topographic maps = NMAS

- @ 1:24,000, 90% of well defined mapped features will be within $12.19-\mathrm{m}$ of true position on the ground.
- @ 1:24,000, 12-m = $0.5-\mathrm{mm}$...
...or dot from $0.5-\mathrm{mm}$ pencil lead

GPS Accuracy

This chart depicts the 100 sample locations over a period of 100 minutes from a consumer GPS receiver, listed by miss distance. Y values represent the error (miss distance) between what the GPS receiver displayed and the true position of the receiver at
 horizontal control station GPS112 on the GMU campus.

This chart depicts a temporal sequence of the 100 position samples taken at 1 min intervals from a consumer GPS receiver. Y values represent the error (miss distance) between what the GPS receiver displayed and the true position of the receiver at horizontal control station GPS112 on the GMU campus. The average error was only $3.5-\mathrm{m}$, and 95% were within $8.2-\mathrm{m}$, an amazing capability given the cost and reliability of these consumer devices. Note the outlyer excursion out to $15-\mathrm{m}$ beginning at ~ 67 minutes.

In other words..
 A 1:24,000 scale topographic map sheet matches GPS
 in accuracy

It is worth noting, this accuracy was achieved at no trivial cost to the US Treasury over the last century.

The lessons: 1) Do not point at position with your finger as your finger represents a significant portion of the map.
2) Be aware of false accuracy in GPS.
3) Pay attention to detail when working.

Reading USNG

Before Continuing...

Please visit:

http:// www.fgdc.gov/ usng/ educational-resources/index html
Download the USNG 1:24,000 training map and the USNG Grid Reader documents
Print the training map on regular paper, taking care to ensure that "Print to fit" and "Autorotate and center" options are turned OFF

Print the USNG Grid Reader document on an overhead transparency and cut one of the grid readers out

US National Grid Training Map

Produced by the United States Geological Survey

 Topography compiled 1964. Planimetry derived from imagerytaken 1998 and other sources. Public Land Survey System and taken 1998 and other sources. P
survey control current as of 1967
North American Datum of 1983 (NAD 83). Projection and 1000 -meter grid: Universal Transverse Mercator, zone 16
10000 -foot ticks: Louisiana Coordinate System of 1983 (south zone) North American Datum of 1927 (NAD 27) is shown by dashed corner ticks. The values of the stiont between NAD 7 . ational Geodetic Survey NADCON software
There may be private inholdings within the boundaries of the Nation
City of New Orleans and Orleans Parish are coextensive
This quadrangle covers a subsidence area
Landmark buildings verified 1967

CONTOUR INTERVAL 5 FEET
NATIONAL GEODETIC VERTICAL DATUM OF 1929 TO CONVERT FROM FEET TO METERS, MULTIPLY BY 0.3048

U.S. National Grid
100,000-m Square ID
BU
Grid Zone Designation
16R

QUADRANGLE LOCATION

Orientation on the Romer Scale

Orientation to the US National Grid format:

Pumping Station at grid: 16R BU 10280976

100,000-m Square ID
USNG format: $\underbrace{16 R}, ~ \underbrace{B U} \underbrace{1028,0976}$

Grid Zone Designation (GZD) (6° lat $\times 8^{\circ}$ longitude quad)

Easting Northing
Grid Coordinates

Read riaht, and up. \uparrow
UTM format: 16R, $210280 \mathrm{mE}, 2309760 \mathrm{mN}$
(Well suited for surveying / distance and direction calculations and a component of the US National Grid.)

How to read the USNG...

The Power of Truncated USNG Values

Pumping Station: 16R BU 10280976
Grid: BU 10280976

The Power of Truncated USNG Values

 Jefferson Pier, Washington, DC
(10-m posting) in the outlined area is unique.

Reading USNG Grid Coordinates

Read RIGHT to grid line 12
Then measure right another 480-meters.

Principal Digits
Water tank located at grid: 16R BU 12491084

> Water Tank at grid: 12491084 (think $\xrightarrow{1249} / 1084 \uparrow$)

4-digit:	1210	$=1,000 \mathrm{~m}$
6-digit:	124108	$=100 \mathrm{~m}$
8-digit:	1249	1084
$=10 \mathrm{~m}$		
10-digit:	12490	10840
	$=1 \mathrm{~m}$	

Then, read UP to grid line 10, and measure UP another 840 -meters.
\qquad

US National Grid Training Map
Building at grid: 145100

Read riaht, and up. \uparrow

$29^{\circ} 52^{\prime} 30^{\prime \prime}$
Produced by the United States Ge Topography compiled 1964. Planimetry d survey control current as of 1967 North American Datum of 1983 (NAD 83),
 North American Datum of 1927 (NAD 27) corner ticks. The values of the shift bewee
NAD 27 for 7.5 -minute intersections are NAD 27 for 7.5 -minute intersections are ot
National Geodetic Survey NADCON softw There may be private inholdings within the
National or State reservations shown on th City of New Orleans and Orleans Parish ar This quadrangle covers a subsidence area Landmark buildings verified 1967

Romer Scale V6
US National Grid (FGOC-STD-011-2001)
Reston, VA 20192
www.fgde.gov/usng

Ex 1

Building at grid: 12101109

Produced by the United States Geological Survey Topography compiled 1964. Planimetry derived from imagery
taken 1998 and other sources. Public Land Survey System and taken 1988 and other sources. ${ }^{\text {Pa }}$
North American Datum of 1983 (NAD 83). Projection and

Read right, and up. \uparrow

There may be private inholdings within the boundaries of the There may be private inholdings within the bounda
National or State reservations shown on this map City of New Orleans and Orleans Parish are coextensive This quadrangle covers a subsidence area Landmark buildings verified 1967

Ex 2

QUADRANGLE LOCATION

CALE 1:24 000
 TO CONVERT FROM FEET TO METERS, MULTIPLY BY 0.3048

US National Grid Training Map

US National Grid Training Map

US National Grid Training Map

US National Grid Training Map

UTM GRID AND 2000 MAGNETIC NORTH
DECLINATION AT CENTER OF SHEET
Ex 9

