FGDC Document Number

National Spatial Data Infrastructure

4

1 2 3

- 5 United States National Grid 6
- (Public Review Draft) 7

8 9

- Standards Working Group 10
- Federal Geographic Data Committee 11

12

13 November, 2000

14

Federal Geographic Data Committee

Department of Agriculture, Department of Commerce, Department of Defense, Department of Energy Department of Housing and Urban Development, Department of the Interior, Department of State Department of Transportation, Environmental Protection Agency Federal Emergency Management Agency, Library of Congress National Aeronautics and Space Administration, National Archives and Records Administration Tennessee Valley Authority

32 33	Federal Geographic Data Committee
33 34	The Federal Geographic Data Committee (FGDC) was established by Office of Management and Budget
35 36	Circular A-16 to promote the coordinated development, use, sharing, and dissemination of geographic data.
37	The FGDC is composed of representatives from the Departments of Agriculture, Commerce, Energy,
38	Housing and Urban Development, the Interior, State, and Transportation; the Environmental Protection
39	Agency; the Federal Emergency Management Agency; the Library of Congress; the National Aeronautics
40	and Space Administration; the National Archives and Records Administration; and the Tennessee Valley
41	Authority. Additional Federal agencies participate on subcommittees and working groups. The Department of the Interior chairs the Subcommittee on Cadastral Data.
42 43	of the interior chairs the Subcommittee on Cadastral Data.
44	Federal Geographic Data Committee subcommittees work on issues related to data categories coordinated
45	under the circular. Subcommittees establish and implement standards for data content, quality, and transfer;
46	encourage the exchange of information and the transfer of data; and organize the collection of geographic
47	data to reduce duplication of effort. Working groups are established for issues that transcend data
48	categories.
49	
50	For more information about the committee, or to be added to the committee's newsletter mailing list, please
51 52	contact:
52 53	Federal Geographic Data Committee Secretariat
54	c/o U.S. Geological Survey
55	590 National Center
56	12201 Sunrise Valley Drive
57	Reston, Virginia 22092
58	
59	Telephone: (703) 648-5514
60	Facsimile: (703) 648-5755
61	Internet (electronic mail): gdc@usgs.gov
62	Anonymous FTP: www.fgdc.gov/pub/
63 64	home page: www.fgdc.gov
65	The following is the recommended bibliographic citation for this publication:
66	The following is the recommended biolographic chauon for this publication.
67	United States National Grid (USNG).

67 United States National Grid (USNG),68 FGDC, September 2000, Reston, Virginia.

69		
70 71	CONTENTS	Page
72	1. Introduction	-
73	1.1 Objective	
74	1.2 Scope	
75	1.3 Applicability	
76	1.4 Related Standards	
77	1.5 Standards Development Process	
78	1.6 Maintenance Authority	
79	2. Conformance	
80	3. Main Features and Specifications	
81	3.1 Equivalency with MGRS	
82	3.2 Basic Numbering	
83	3.3 Referencing Scheme	
84	3.3.1.Grid Zone Designation	
85	3.3.2 100,000-meter Square Identification	
86	3.3.3 Grid Coordinates	
87		
	4. Relationship to Datums	
88	5. Accuracy and Precision	
89	5.1 Accuracy	
90	5.2 Precision	
91	5.2.1 Field Applications	
92	5.2.2 Special Applications	
93	6. References.	
94	Annex A (Normative) Normative Figures	
95	Annex B (Normative) Use of North American Datum 1927 (NAD 27)	
96	B.1 Map Producers	
97	B.2 Users	
98	Annex C (Normative) Truncation of UTM Coordinate Values	
99	Annex D (Informative) USNG Implementations	
100	D.1 Applications	
101	D.1.1 General Features	
102	D.1.2 Large Geographic Areas	
103	D.1.3 Regional Areas	
104	D.1.4 Local Areas	
105	D.1.5 Local Areas Near Grid Zone and/or 100,000-meter Square Boundaries	
106	D.1.6 Complete Grid Reference	
107	D.1.7 Reading Grid Coordinates	
108	Annex E (Informative) Informative Figures	
109	Annex F (Informative) General Conventions for USNG	
110	F.1 Appropriate Use of Truncated Values	
111	F.2 Geographic Indexing	
112	F.2.1 National Atlas or Map	
113	F.2.2 State Map Index	
114	F.2.3 City Street Index	
115	F.3 Portrayal of USNG Grids and Grid Values on Maps	
116	F.3.1 Grid Spacing	
117	F.3.2 Grid Value Portrayal	
118	F.3.3 Grid Reference Box	
119	Annex G (Informative) Why the United States National Grid is Needed	
120	Annex H (Informative) Glossary	
121		
122	Figures	
	-	

iii

124		Figure 1	GZDs of the USNG	13
125		Figure 2	Basic Plan of the 100,000-meter Square Identifications of the USNG	14
126		Figure 3	Organization of the USNG 100,000-meter squares	15
127		Figure 4	Methods for showing GZDs and 100,000-meter Squares of the USNG in the	
128		-	Grid Reference Box	27
129		Figure 5	Sample Grid Reference Box with instructions for giving a complete reference	28
130		Figure 6	USNG Principal Digits	29
131		Figure 7	Convention for portrayal of grid lines, UTM values, and USNG 100,000-meter	
132			square identifications	30
133		Figure 8	How to read USNG grid coordinates (1:24,000)	31
134		•		
135	Tables			
136		Table 1	Truncation of USNG Values	19
137		Table 2	Grid Spacing Recommendation	36

138 1. INTRODUCTION

139

141

140 1.1 Objective

142 The objective of this standard is to create a more favorable environment for developing location-143 based services within the United States and to increase the interoperability of location services 144 appliances with traditional printed map products by establishing a nationally consistent grid 145 reference system as the preferred grid for National Spatial Data Infrastructure (NSDI) applications.

146

147 There are a number of coordinate reference systems that can be used either in location service 148 appliances or on printed maps for the purpose of establishing a location. Within automated 149 location service appliances, the conversion of coordinates based on one well-defined reference 150 system to coordinates based on another can be both automatic and transparent to the user. These 151 devices can support multiple coordinate reference systems with little difficulty. However, it is not 152 easy for humans to work in multiple reference systems and humans cannot convert between 153 systems without the aid of location service appliances, calculators, or conversion tables. 154 Furthermore, it is difficult for humans to accurately determine a location coordinate from paper 155 maps when spherical coordinate reference systems, like latitude and longitude, are used because 156 they do not appear square on the flat map. As a consequence paper maps created for the general 157 public frequently have a square reference grid that overlays the non-rectangular coordinate 158 reference system. It is computationally difficult, labor intensive, and time consuming to convert the 159 reference grid coordinate obtained from one printed map to another printed map with a different 160 grid even when both grid reference systems are well defined. It can be impossible when proprietary 161 grids are used. This situation greatly limits the ability of humans to use location service devices 162 with traditional printed maps. Subsequently, location based services in this country have been 163 limited to totally digital environments, restricting the number of users and uses and retarding the 164 development of the location based service industry.

Federal Geographic Data Committee United States National Grid (Public Review Draft)

66		This standard seeks to improve the current situation by identifying a single nationally consistent,
67		humanly facile grid reference system as the preferred U.S. National Grid (USNG) and promoting
68		its use within the NSDI.
69		
70	1.2	Scope
71		
72		This standard defines a preferred U.S. National Grid (USNG) for large and medium-scale ¹
73		mapping applications. It defines how to present UTM coordinates at various levels of precision. It
74		specifies the use of those coordinates with the grid system defined by the Military Grid Reference
75		System (MGRS). Additionally, it addresses specific presentation issues such as grid spacing. The
76		UTM coordinate representation, the MGRS grid, and the specific grid presentation requirements
7		together define the USNG. This standard is a process standard as defined by the FGDC Standards
8		Reference Model. Specifically, it is a presentation process standard.
79		
30	1.3	Applicability
81		
2		This standard is for use in the acquisition or production, either directly or indirectly through
3		contracts and partnerships, of printed maps and the acquisition, either directly or indirectly, of
1		location service appliances. The USNG addresses the geospatial coordinate, human interface of
5		products and services designed as interoperable components of the NSDI. This standard applies to
6		printed maps that are intended to be used or are likely to be used by humans in conjunction with
7		location service appliances and to location service appliances that are intended to be used or are
3		likely to be used by humans in conjunction with printed map products.
)		
		This standard is not applicable to the collection of geospatial data, either remote sensed data
		collection or field surveys. This standard is not applicable to the internal data storage structure of
		· · · · · · · · · · · · · · · · · · ·

¹ For this standard, large and medium-scale shall be defined as from approximately 1:5000 to 1:1,000,000 applications.

192		any GIS or location service appliance or to the transfer of coordinates between databases or
193		appliances.
194		
195		Use of USNG grid coordinates may be useful or even desirable within some systems or enterprises.
196		The decision to use USNG grid coordinates or some other coordinate system internal to
197		geographic information systems or location service appliances is left to the discretion of the system
198		developer as long as the human interface provides for USNG grid coordinate readout as one
199		option.
200		
201		The USNG is not applicable to surveying. This standard does not attempt to replace the State
202		Plane Coordinate Systems (SPCS) established by the National Geodetic Survey specifically for
203		field surveying. The SPCS is specifically designed to meet the requirements of surveyors and
204		engineers in determining location and boundaries and most states mandate its use by law especially
205		for cadastral surveys. The USNG does not address those needs. SPCS coordinates can be readily
206		converted to USNG grid coordinates for subsequent use within the NSDI.
207		
208		The USNG is interoperable with the MGRS. This will be of critical importance to safety of life
209		during times of disaster relief operations.
210		
211	1.4	Related Standards
212		
213		This standard is compatible with:
214		
215		• ANSI X3.61-1986, Representation of Geographic Point Locations for Information
216		Interchange, which standardizes representation of UTM coordinates for computer
217		representation.
218		

219		• ISO/DIS 19116, Positioning Services, which provides an interface for real-time output from a
220		GPS receiver and other positioning technologies.
221		
222		• ISO/DIS 19111, Spatial Referencing by Geographic Coordinates, which provides a conceptual
223		schema for the description of coordinate reference systems.
224		
225		• The USNG standard is based on the MGRS.
226		
227	1.5	Standards Development Process
228		
229		The USNG is an initiative of the Public XY Mapping Project, which is a not-for-profit
230		organization created specifically to promote the concept of a national grid for the United States.
231		The original concept can be traced to discussions within the American Society for Photogrammetry
232		and Remote Sensing. The Public XY Mapping Project developed the idea conducting tests and
233		surveys to determine which coordinate reference system best met the nationally consistent and ease
234		of human use requirements. Based on this research and testing, a standard based on the Military
235		Grid Reference System (MGRS) was developed.
236		
237		Because of the importance of this project to the NSDI, the Public XY Project brought its findings
238		to the Federal Geographic Data Committee (FGDC) in 1998. After briefing the FGDC
239		Coordination Group, an ad hoc study group, that included the FGDC Staff Director and the Chair
240		of the FGDC Standards Working Group, recommended that the FGDC accept the project as an
241		FGDC standard development activity. The FGDC Standards Working Group then created a
242		subgroup led by the Public XY Mapping Project to husband the project through the FGDC
243		standards process. The subgroup contains members from both the public and private sector,
244		including key participation from the National Imagery and Mapping Agency to assure that the
245		USNG retains interoperability with the MGRS. The subgroup refined the standard and through an

246		iterative review process with the FGDC Standards Working Group, produced, in November 2000,
247		a final draft for public review consistent with the FGDC standards directives.
248		
249	1.6	Maintenance Authority
250		
251		The Public XY Mapping Project will maintain this standard for the first five years. The Public XY
252		Mapping Project has demonstrated the ability to marshal the resources needed to develop,
253		promote, and initially implement the standard. After five years, the FGDC Standards Working
254		Group will evaluate the need to move maintenance responsibility to one of the A-16 agencies.
255		

255 2. CONFORMANCE

256

Location service appliances that claim conformance to this standard shall accept USNG coordinates, as defined in Section 3, as input from the human user and provide USNG coordinate output to the human user, as at least one option.

260

Printed map products that claim conformance to this standard shall provide a means for humans to accurately locate a USNG coordinate on the map and for humans to extract, for any point on the map, an accurate USNG coordinate. This will usually mean that the USNG will be printed on the map according to the guidance in this specification.

265	3.	MAIN FEATUES AND SPECIFICATIONS.
266		
267	3.1	Equivalency With MGRS
268		
269		USNG coordinates shall be identical to the MGRS numbering scheme over all areas of the United
270		States including outlying territories and possessions.
271		
272	3.2	Basic Numbering
273		
274		USNG basic coordinate values and numbering are identical to UTM coordinate values over all
275		areas of the United States including outlying territories and possessions.
276		
277	3.3	Referencing Scheme
278		
279		Numbering scheme shall be alphanumeric as follows:
280		
281	3.3.1	Grid Zone Designation
282		
283		First, the U.S. geographic area shall be divided into 6-degree longitudinal zones designated by a
284		number and 8-degree latitudinal bands designated by a letter. Thus each area is given a unique
285		alpha-numeric Grid Zone Designator (GZD) (Annex A, Figure 1).
286		
287		The longitude zone numbers and latitude band letters for GZD over the United States shall be
288		taken from the global scheme of MGRS.
289		
290		18S – Identifies a GZD.
291		
292	3.3.2	100,000-meter Square Identification

293		
294		Each GZD 6x8 degree area shall be covered by a specific scheme of 100,000-meter squares where
295		each square is identified by two unique letters (Annex A, Figures 2 and 3). The 100,000-meter
296		Square Identifications shall be taken from the scheme defined by the MGRS.
297		
298		18SUJ – Identifies a specific 100,000-meter square in the specified GZD.
299		
300	3.3.3	Grid Coordinates
301		
302		A point position within the 100,000-meter square shall be given by the UTM grid coordinates in
303		terms of its Easting (E) and Northing (N). An equal number of digits shall be used for E and N
304		where the number of digits depends on the precision desired in position referencing. In this
305		convention, the reading shall be from left with Easting first and then Northing.
306		Examples:
307		- Locates a point with a precision of 10 km
308		- Locates a point with a precision of 1 km
309		- Locates a point with a precision of 100 meters
310		- Locates a point with a precision of 10 meters
311		- Locates a point with a precision of 1 meter
312		
313		The number of digits in Easting and Northing can be varied, depending on specific requirements or
314		application.
315		

315	4.	RELATIONSHIP TO DATUMS
316		
317		The standard datum for USNG coordinates shall be the North American Datum 1983 (NAD 83) or
318		its international equivalents, the World Geodetic System 1984 (WGS 84), and the International
319		Terrestrial Reference Frame (ITRF).
320		
321		For practical applications using an existing map referenced to North American Datum 1927 (NAD
322		27), see Annex B.
323		

323	5.	ACCURACY AND PRECISION
324		
325	5.1	Accuracy
326		
327		Paper maps using the USNG grid shall conform to the National Map Accuracy Standard.
328		
329	5.2	Precision
330		
331		USNG provides a flexible numbering scheme to accommodate variable precision from tens of
332		kilometers to one meter or higher.
333		
334	5.2.1	Field Applications
335		
336		For general field applications, it will be typical to use to a precision of one hundred or ten meters.
337		
338	5.2.2	Special Applications
339		
340		For special applications, the USNG provides precision up to one meter or higher.
341		
342		For example, the location of the Washington Monument in Washington, DC can be identified in
343		NAD 83 datum.
344		
345		General reference: 18SUJ23480647
346		Special application: 18SUJ2348316806479498
347		

347 6. REFERENCES

348	
349	American National Standards Institute, Inc. (ANSI), 1986, American National Standard for
350	Information Systems - X3.61-1986, Representation of Geographic Point Locations for Information
351	Interchange (Formerly Federal Information Processing Standard 70-1)
352	
353	National Imagery and Mapping Agency (NIMA), 1990, DMA Technical Manual 8358.1 Datums,
354	Ellipsoids, Grids, and Grid Reference Systems, Edition 1
355	
356	Synder, John P., 1987, Map Projections - A Working Manual; U.S. Geological Survey
357	Professional Paper 1395, US Government Printing Office, Washington, DC
358	
359	Thompson, M.M., 1979, Maps for America, US Government Printing Office, Washington, DC

360	
361	
362	
363	
364	
365	United States National Grid
366	Annex A (Normative)
367	Normative Figures

368	
369	
370	
371	
372	
373	United States National Grid
374	Annex B (Normative)
375	Use of North American Datum 1927 (NAD27)

376	ANNEX B (Normative)				
377	Use of North American Datum 1927 (NAD 27)				
378					
379	B.1	Map Producers			
380					
381		Map producers who must use the obsolete North American Datum 1927 (NAD 27) shall			
382		prominently place a note on the product that the 100,000-meter square identifications are different			
383		from those employed in WGS 84/NAD 83/ITRF. Producers shall refer to National Imagery and			
384		Mapping Agency (NIMA), 1990, Defense Mapping Agency (DMA) Technical Manual 8358.1			
385		Datums, Ellipsoids, Grids, and Grid Reference Systems, Edition 1, Appendix B, Figure B-4 for the			
386		labeling scheme used with NAD 27.			
387					
388	B.2.	Users			
389					
390		When expressing a spatial coordinate referenced to NAD 27, users shall include a reference to			
391		NAD 27 with the coordinate.			
392					
393		Example: 18SUT06909680 (NAD 27)			

394	
395	
396	
397	
398	
399	United States National Grid
400	Annex C (Normative)
401	Truncation of USNG Coordinate Values

402 ANNEX C (Normative)

403 Truncation of USNG Coordinate Values

404

A uniform system of truncation is adopted for the USNG². Truncated coordinates begin with the 10,000meter digit. Truncated coordinate values shall always consist of an even number of digits. Table 1 demonstrates how to truncate USNG grid coordinate values and compares these with truncated UTM grid coordinates. The portions of the USNG grid coordinate that is imbedded in the UTM coordinate value are underlined for illustrative purposes.

410

411

Table 1. Truncation of USNG values

Examples of truncated grid coordinates

	Complete grid reference		Truncate	ed coordinates	
		Four digit	Six digit	Eight digit	Ten digit
		(1 km)	(100-m)	(10-meter)	(1-meter)
UTM	+18,3 <u>23483</u> .168,43 <u>06479</u> .498	2306	234064	23480647	2348306479
USNG	18SUJ <u>2348306479</u>	2306	234064	23480647	2348306479

412

² A similar system of coordinate truncation can be employed for UTM grid coordinates. However, such a system is not part of the UTM standard and is included here in Table 1 for illustration and uniformity purposes.

412	
413	
414	
415	
416	
417	United States National Grid
418	Annex D (Informative)
419	USNG Implementations

_	1
ANN	EX D (Informative)
USN	G Implementations
D.1	Applications
D.1.	General features
	All elements of a grid reference need not be used. Their use depends upon the size of the area of
	activities, the type of use, and the scale of map to which the reference is keyed. Users will decide
	which elements of the grid references are to be used based on specific circumstances. The
	following paragraphs provide guidance for the use of GZDs and 100,000-meter Square
	Identifications.
D.1.	2 Large geographic areas
	For situations or issues spanning large geographical areas, such as conterminous United States or
	Alaska, the GZD is usually given (such as 18S in 18SUJ23480647). The designation will alleviate
	ambiguity between identical references that may occur when reporting to a station outside the area.
	The GZD is always used in giving references on 1:1,000,000-scale to 1:500,000 scale maps.
D.1.	B Regional areas
	For areas of lesser extent than conterminous United States, but exceeding 100,000 meters, the
	100,000-meter Square Identification is used (such as UJ in UJ23480647).
D.1.4	Local areas

 sed, unless reporting falls within the parameters explained in preceding paragraphs. In the instance of local reporting, only the numerical part of the grid reference is required (such as 23480647). 545 545 546 547 547 548 549 549 549 549 549 549 549 549 549 541 544 544 545 545 545 545 545 545 545 546 547 548 548 549 549 541 544 544 544 545 545 545 545 546 547 548 548 548 549 549 549 541 541 541 544 544 544 544 544 544 544 545 545 545 545 546 547 548 549 549 544 544<	447		For small and localized areas, the GZDs and 100,000-meter Square Identifications need not to be
 23480647). 23480647). D.1.5 For local areas near Grid Zone and/or 100,000-meter Square boundaries D.1.5 For local areas near Grid Zone and/or 100,000-meter Square boundaries D.1.5 Grid Zone Boundary D.1.5 Grid Zone Boundary coordinate. coordinate. D.1.5.2 100,000-meter Square Identification have to be used with the USNG coordinate. D.1.5.2 100,000-meter Square Boundary D.1.5.2 100,000-meter Square Identification has to be used with the USNG coordinate. D.1.5.2 100,000-meter Square Boundary D.1.5 Complete grid reference Topographic maps at 1:500,000 and larger-scales should provide a grid reference box with the elements for making a complete grid reference. See Annex E, Figure 4. Annex E, Figure 5 provides an example of an option for a grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference. D.1.7 Reading grid coordinates D.1.7 Principal digits 	448		used, unless reporting falls within the parameters explained in preceding paragraphs. In the
451452D.1.5For local areas near Grid Zone and/or 100,000-meter Square boundaries453D.1.5.1Grid Zone Boundary454D.1.5.1Grid Zone Boundary455In this case, GZD and 100,000-meter Square Identification have to be used with the USNG456In this case, GZD and 100,000-meter Square Identification have to be used with the USNG457D.1.5.2Ion,000-meter Square Boundary458In this case, the 100,000-meter Square Identification have to be used with the USNG coordinate.460In this case, the 100,000-meter Square Identification have to be used with the USNG coordinate.461In this case, the 100,000-meter Square Identification have to be used with the USNG coordinate.462In this case, the 100,000-meter Square Identification have to be used with the USNG coordinate.463D.1.6Complete grid reference464In this case, the 100,000 and larger-scales should provide a grid reference box with the465In opportable maps at 1:500,000 and larger-scales should provide a grid reference box with the466In opportable of an option for a grid reference. See Annex E, Figure 4. Annex E, Figure 5467In this case nearmaple of an option for a grid reference box with instructions for making a complete468Interference.469Interference.460Interference.461Interference.462Interference.463Interference.464Interference.465Interference.466Interference.467In	449		instance of local reporting, only the numerical part of the grid reference is required (such as
452D.1.5For local areas near Grid Zone and/or 100,000-meter Square boundaries453D.1.5.1Grid Zone Boundary454D.1.5.1Grid Zone Boundary455D.1.5.2In this case, GZD and 100,000-meter Square Identification have to be used with the USNG456D.1.5.2Io0,000-meter Square Boundary457D.1.5.2IO,000-meter Square Boundary468In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate.469O.1.6Complete grid reference461In this case, the 100,000-and larger-scales should provide a grid reference box with the462In topgraphic maps at 1:500,000 and larger-scales should provide a grid reference box with instructions for making a complete grid reference. See Annex E, Figure 4. Annex E, Figure 5463In provides an example of an option for a grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference.469In this case, grid coordinates470D.1.7471Interplatigrit	450		23480647).
 453 454 b.1.5.1 Grid Zone Boundary 455 456 457 In this case, GZD and 100,000-meter Square Identification have to be used with the USNG coordinate. 458 459 b.1.5.2 100,000-meter Square Boundary 460 461 In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate. 462 463 464 In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate. 464 464 In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate. 465 In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate. 466 In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate. 467 In this case, the 100,000 and larger-scales should provide a grid reference box with the temperature of a provides an example of an option for a grid reference. See Annex E, Figure 4. Annex E, Figure 5 provides an example of an option for a grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for	451		
 A54 D.1.5.1 Grid Zone Boundary A55 In this case, GZD and 100,000-meter Square Identification have to be used with the USNG coordinate. 456 D.1.5.2 100,000-meter Square Boundary 460 In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate. 461 In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate. 462 In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate. 463 D.1.6 Complete grid reference 464 In this case, the 100,000 and larger-scales should provide a grid reference box with the elements for making a complete grid reference. See Annex E, Figure 4. Annex E, Figure 5 provides an example of an option for a grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference. 468 Jos Jos Jos Jos Jos Jos Jos Jos Jos Jos	452	D.1.5	For local areas near Grid Zone and/or 100,000-meter Square boundaries
 455 456 457 458 459 459 459 450 460 461 463 464 464 465 466 466 467 468 469 469 469 469 460 461 461 462 463 464 464 465 466 466 467 468 469 469 469 469 460 460 460 461 461 462 463 464 464 464 465 466 466 467 468 468 468 469 469 469 469 460 460 460 460 461 461 462 463 464 464 464 465 466 466 467 468 468	453		
 Afsei In this case, GZD and 100,000-meter Square Identification have to be used with the USNG coordinate. accordinate. b.1.5.2 100,000-meter Square Boundary accordinate. accor	454	D.1.5.1	Grid Zone Boundary
 457 coordinate. 458 459 D.1.5.2 10,000-meter Square Boundary 460 461 In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate. 462 463 D.1.6 Complete grid reference 464 Interpret of the provide a grid reference box with the elements for making a complete grid reference. See Annex E, Figure 4. Annex E, Figure 5 467 provides an example of an option for a grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference box with instructions for making a complete grid reference. 469 J.1.7 Reading grid coordinates 470 D.1.7 Principal digits 	455		
 458 459 D.1.5.2 100.000-meter Square Boundary 460 461 In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate. 462 463 D.1.6 Complete grid reference 464 Interpret of the provide a grid reference box with the USNG coordinate. 465 Interpret of the provides an example of an option for a grid reference box with instructions for making a complete	456		In this case, GZD and 100,000-meter Square Identification have to be used with the USNG
 459 A1.5.2 10,000-meter Square Boundary 460 461 462 463 464 464 464 464 465 466 466 467 468 468 469 469 469 469 469 469 460 460 461 461 462 463 464 464 464 465 466 466 467 468 468	457		coordinate.
 460 461 In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate. 462 463 D.1.6 Complete grid reference 464 465 Topographic maps at 1:500,000 and larger-scales should provide a grid reference box with the 466 elements for making a complete grid reference. See Annex E, Figure 4. Annex E, Figure 5 467 provides an example of an option for a grid reference box with instructions for making a complete 468 grid reference. 469 470 D.1.7 Reading grid coordinates 471 472 D.1.7 Pincipal digits 	458		
 461 In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate. 462 463 D.1.6 Complete grid reference 464 Topographic maps at 1:500,000 and larger-scales should provide a grid reference box with the 466 elements for making a complete grid reference. See Annex E, Figure 4. Annex E, Figure 5 467 provides an example of an option for a grid reference box with instructions for making a complete 468 grid reference. 469 provides an example of an option for a grid reference box with instructions for making a complete 470 D.1.7 Reading grid coordinates 471 D.1.7 Principal digits 	459	D.1.5.2	100,000-meter Square Boundary
 462 463 D.1.6 Complete grid reference 464 465 Topographic maps at 1:500,000 and larger-scales should provide a grid reference box with the 466 elements for making a complete grid reference. See Annex E, Figure 4. Annex E, Figure 5 467 provides an example of an option for a grid reference box with instructions for making a complete 468 grid reference. 469 470 D.1.7 Reading grid coordinates 471 472 D.1.7. Principal digits 	460		
 463 D.1.6 Complete grid reference 464 465 Topographic maps at 1:500,000 and larger-scales should provide a grid reference box with the 466 elements for making a complete grid reference. See Annex E, Figure 4. Annex E, Figure 5 467 provides an example of an option for a grid reference box with instructions for making a complete 468 grid reference. 469 J.1.7 Reading grid coordinates 471 D.1.7 Principal digits 	461		In this case, the 100,000-meter Square Identification has to be used with the USNG coordinate.
 464 465 Topographic maps at 1:500,000 and larger-scales should provide a grid reference box with the 466 elements for making a complete grid reference. See Annex E, Figure 4. Annex E, Figure 5 467 provides an example of an option for a grid reference box with instructions for making a complete 468 grid reference. 469 470 D.1.7 Reading grid coordinates 471 472 D.1.7. Principal digits 	462		
 465 Topographic maps at 1:500,000 and larger-scales should provide a grid reference box with the 466 elements for making a complete grid reference. See Annex E, Figure 4. Annex E, Figure 5 467 provides an example of an option for a grid reference box with instructions for making a complete 468 grid reference. 469 470 D.1.7 Reading grid coordinates 471 472 D.1.7.1 Principal digits 	463	D.1.6	Complete grid reference
 466 elements for making a complete grid reference. See Annex E, Figure 4. Annex E, Figure 5 467 provides an example of an option for a grid reference box with instructions for making a complete 468 grid reference. 469 470 D.1.7 Reading grid coordinates 471 D.1.7. Principal digits 	464		
 467 provides an example of an option for a grid reference box with instructions for making a complete 468 grid reference. 469 470 D.1.7 Reading grid coordinates 471 472 D.1.7.1 Principal digits 	465		Topographic maps at 1:500,000 and larger-scales should provide a grid reference box with the
 468 grid reference. 469 470 D.1.7 Reading grid coordinates 471 472 D.1.7.1 Principal digits 	466		elements for making a complete grid reference. See Annex E, Figure 4. Annex E, Figure 5
 469 470 D.1.7 Reading grid coordinates 471 472 D.1.7.1 Principal digits 	467		provides an example of an option for a grid reference box with instructions for making a complete
 470 D.1.7 Reading grid coordinates 471 472 D.1.7.1 Principal digits 	468		grid reference.
471472 D.1.7.1 Principal digits	469		
472 D.1.7.1 Principal digits	470	D.1.7	Reading grid coordinates
	471		
473	472	D.1.7.1	Principal digits
	473		

474		The 10,000-meter and 1,000-meter digits are known as the principal digits and identify grid lines.
475		Preceding UTM values are shown as superscript. Alternatively, only the principal digits for grid
476		lines need be shown, but a sample full UTM value for both the Easting and Northing axis must be
477		depicted at least once on the map. See Annex E, Figures 6 and 7.
478		
479	D.1.7.2	Read right and up
480		
481		The numerical part of a grid reference always contains an even number of digits. The first half of
482		the total number of digits represents the Easting, and the second half the Northing. The standard
483		convention of reading "right (Easting) and up (Northing)" is employed.
484		
485	D.1.7.3	Read right
486		
487		To read the Easting coordinate, locate the first Easting (vertical grid line to the left of the point of
488		reference and read the large digits, the principal digits labeling the line either in the top or bottom
489		margin or on the line itself. Smaller digits shown as part of a grid number are ignored. Estimate,
490		or scale the distance between the Easting line to the left of the point and the point itself.
491		
492	D.1.7.4	Read up
493		
494		The reading of the Northing coordinate is made in a similar manner. Locate the first Northing
495		(horizontal) grid line below the point of reference and read the principal digits labeling the line
496		located in the left or right margin or on the line itself. Then estimate, or scale the distance between
497		the Northing grid line below the point and the point itself.
498		
499	D.1.7.5	Grid coordinates
500		

501	The numerical part of a point reference taken from a 1,000-meter grid (on maps at scales of
502	1:100,000 and larger) is typically either a six-digit or eight-digit number; for example 234064 or
503	23480647. For a six-digit grid coordinate (i.e. 234064), reading from left to right, the 23
504	represents the 10,000 and 1,000 digits of the first Easting grid line to the left of the point, the 4
505	represents the estimated or scaled (nearest 100 meters) from the Easting line to the point, the 06
506	represents the 10,000 and 1,000 digits of the first Northing grid line below the point, and the 4
507	represents the estimated or scaled (nearest 100 meters) from the Northing grid line to the point.
508	
509	D.1.7.6 Example reading of grid coordinates
510	
511	Refer to Annex E, Figure 8 for the following example.
512	A reference is written as an entity without spaces, parentheses, dashes, or decimal points. In this
513	example the grid coordinates are shown for a map feature, a small cemetery. From the legend the
514	feature is located in GZD (18S) and 100,000-meter square (TH). For the grid coordinates, read
515	right to the grid intersection immediately left and below the place of interest. In Figure 8, it is line
516	95. Then count grid lines up to the intersection (in this example 92). The coordinate value 9592
517	gives the location to within 1,000 meters. Measuring or estimating right in meters from line 95,
518	finds the cemetery is another 410-meters. The complete USNG Easting component is 95410.
519	Measuring up (north) from line 92, the cemetery is another 630 meters. The complete USNG
520	Northing component is 92630. In this example a precision of 10 meters is required, thus the eight
521	digit coordinate value of the cemetery is 95419263. Notice how the 1-meter values of 0 have been
522	dropped in the eight digit grid coordinates. The USNG coordinate values are:

Full USNG:	18STH95419263
Without GZD:	TH95419263
Without GZD and 100,000-meter Square Identification:	95419263

525	Using the example of the cemetery above, grid coordinates are illustrated below for four, six, eight,			
526	and ten digits. These values represent a point position (the southwest corner) for an area of			
527	refinement.			
528				
529	Four digits	9592Locati	ng a point within a 1,000 meter square.	
530	Six digits	954926	Locating a point within a 100 meter square.	
531	Eight digits	95419263	Locating a point within a 10 meter square.	
532	Ten digits	9541092630	Locating a point within a 1 meter square.	

533	
534	
535	
536	
537	
538	United States National Grid
539	Annex E (Informative)
540	Informative Figures

541	
542	
543	
544	
545	
546	United States National Grid
547	Annex F (Informative)
548	General Conventions for the USNG

549	ANNEX F (Informative)		
550	General Conventions for the USNG.		
551			
552	F.1	Appropriate use of truncated values	
553			
554		Full USNG values should be provided when they are used to indicate a spatial address on	
555		stationary letterhead, business cards, etc., even though the reader will know from the street address	
556		that it is in the vicinity of a given town. This will facilitate someone using USNG spatial addresses	
557		with a GPS receiver or digital map. For example:	
558			
559		Department of Interior	
560		1849 C Street NW, Washington, DC 20006	
561		USNG: 18SUJ22850705 (NAD 83)	
562			
563		Alternatively, when two people are exchanging positioning information by voice or other informal	
564		means, they will often use only the USNG grid coordinate, such as: "We're located in Washington	
565		at 1849 C Street, NW, grid 22850705."	
566			
567	F.2	Geographic indexing	
568			
569	F.2.1	National Atlas or Map	
570			
571		Features should be referenced in a map or atlas index using USNG values. In the case of an atlas,	
572		the particular page numbers would also be indicated. For example, the cities of Huntsville can be	
573		referenced as:	
574			
575		Huntsville, AL ED 3743	

576		Huntsville, AR	VV 3393
577		Huntsville, MO	WD 3965
578		Huntsville, OH	KE 6280
579		Huntsville, TN	GF 2532
580		Huntsville, TX	TQ 5501
581		Huntsville, UT	VL 3567
582			
583		The exception to this format is A	laska, which exceeds 18° of latitude and longitude in extent (more
584		than three grid zones). For Alas	ka, the GZD should also be shown.
585			
586	F.2.2	State map index	
587			
588		An index for a state atlas or map	for Texas can reference the city of Huntsville as:
589			
590		Huntington	UQ 4961
591		Huntoon	LF 5335
592		Hunstville	TQ 5501
593		Huntsville St Park	TP 5790
594		Hurlwood	GT 7419
595			
596		In the case of a state atlas, the	e page numbers for each feature would also be indicated. The
597		exception to this format is again	Alaska, where the GZD should also be shown.
598			
599	F.2.3	City street index	
600			
601		A large-scale atlas or street map	for Huntsville, TX can index street names as:
602			

603		Baker	TP 562995
604		Beto	TP 571981
605		Bowers	TQ 570005
606		Brook	TP 567984
607		Bush	TQ 543021
608			
609		Note that since the exten	nt of Huntsville, TX is not larger than 100 x 100 kilometers, the 100,000-
610		meter Square Identificat	tions are not essential in this street index. A city street atlas would also
611		reference the page numb	er unique to that atlas for the street.
612			
613	F.3 Por	trayal of USNG grids and	grid values on maps
614			
615	F.3.1	Grid spacing	
616			
617		On large-scale paper ma	aps, precise measurement requires a fine line square grid. Grids provide
618		the user with a geodet	tic reference in close proximity to any point on the map facilitating
619		measurement and comp	ensating for paper distortion. The size of grid squares is a trade off
620		between a precise refere	nce tool and clutter. Table 2 provides a proven and useful convention and
621		guide for grid spacing of	n maps wherein grid squares on maps are no smaller than 20mm nor larger
622		than 100mm along each	side.
623			

Table 2. Grid spacing recommendation

624

Map scale	Grid spacing	Grid spacing
	(On ground in meters.)	(On map in millimeters.)
1:10,000	1,000	100
1:20,000	1,000	50.0
1:24,000	1,000	41.6
1:25,000	1,000	40.0
1:50,000	1,000	20
	or	or
	5,000	100.0
1:62,500	5,000	80.0
1:63,360	5,000	78.7
1:100,000	10,000	100.0
1:250,000	10,000	40.0
1:500,000	50,000	100.0
1:1,000,000	100,000	100.0

625

626 F.3.2 Grid value portrayal

627

628 The USNG is based on the UTM grid, and as such the first two digits in USNG Easting and
629 Northing are the same as the 10,000-meter and 1,000-meter digits of UTM Easting and Northing
630 coordinates. Provisions should be made so map users can have essential information for using

631		USNG coordinate equivalent to UTM coordinate. A sample of at least one full UTM value should
632		be shown for both an Easting and Northing values, preferably in the lower left corner of the map.
633		When UTM values are shown, the principal digits are provided in larger type. Other grid lines
634		should be identified using UTM principal digits (both the 10,000-meter and 1,000-meter UTM
635		values) with the proceeding digits as superscript. Alternatively, only the principal digits for grid
636		lines need be shown, but a sample full UTM value for both the Easting and Northing axis must be
637		depicted at least once on the map. Annex E, Figure 7 depicts how grid lines are labeled and
638		100,000-meter squares identified on the map and along the neatline.
639		
640	F.3.3	Grid reference box
641		

642 Maps at scales 1:500,000 and larger should provide a grid reference box similar in content to 643 either Figure 4 or 5 (Annex E).

	Federal Geographic Data Committee United States National Grid (Public Review Draft) Annex G – Why the United States National Grid is Needed	XXX
644 645	Federal Geographic Data Committee United States National Grid	XXX
646		
647		
648		
649		
650		
651	United States National Grid	
652	Annex G (Informative)	

⁶⁵³ Why the United States National Grid is Needed

654 ANNEX G (Informative)

655 Why the United States National Grid is Needed

656

657 Americans have many sources of geographic information to support their day-to-day activities. Commercial 658 street and highway maps are a major source of this information. These commercial products typically carry 659 a system of proprietary atlas grids, unique to a particular map or map brand. Atlas grid coordinates consist 660 of an arbitrary alphanumeric code that locates places within a cell of a given spatial extent.

661

A community often has a variety of large-scale maps available that use disparate coordinate systems. In a sample of the Washington, DC area conducted in 1998, four years after the Global Positioning System (GPS) reached full operational capability, 25 different large-scale commercial street maps were obtained from retail outlets. On these maps, there existed 21 different coordinate systems. Of these grids, none worked with readily available, low-cost consumer GPS receivers. Some commercial mapmakers claim their maps (and atlas grids) are the de facto standard in some communities, because in some cases, local governments have adopted one of these proprietary atlas grids for use as a spatial address system.

669

670 Often organizations with a local focus do not recognize problems inherent in the use of disparate grid 671 systems or the need for a preferred system that is national in scope. Consumers and businesses that must 672 routinely cross interstate and local government boundaries require a solution national in scope. In an 673 emergency scenario where time is precious and understanding communicated locations or positions in a 674 non-conflicting manner is critical, it is operationally best for all to use a standard reference system. When a 675 local government accepts the use of a proprietary coordinate system as a "de facto" standard, it grants a 676 monopolistic license to a specific commercial map vendor, thereby inhibiting competition in that 677 community's marketplace. The USNG provides commercial map vendors who choose to adopt it a preferred 678 coordinate system that enhances their products by enabling the exchange of spatial address information.

679

680 Addressing Schemes

682 Americans have traditionally used postal or street addresses to locate a destination in their day-to-day 683 activities. In 30 of the 50 States, the Public Land Survey System (PLSS) is another system often used to 684 describe a piece of property. Traditional street addressing schemes have provided a one-dimensional 685 solution, and these will continue to be used. Nonetheless, these systems are flawed by their lack of 686 mathematical uniformity. Additionally, they often lack the ability to provide an address for any point in the 687 nation. These different systems do not work with GPS, or are unreliable for work with GPS and digital 688 maps, and they do not accommodate the level of precision that GPS can provide. With the advent of GPS, 689 the average citizen can purchase access to a \$10 billion source of precise positioning information for the 690 price of a good watch. In the near future, vehicles will routinely come equipped with GPS driven digital 691 maps. Mobile wireless communications have become pervasive, allowing community members to cheaply 692 communicate with one another from any point on he globe. When people communicate, one of the 693 fundamental pieces of information they often need to exchange is location. In view of these technological 694 advances, there exists a need to support the community in its use and communications of geospatial 695 information with a preferred spatial address system.

696

697 Computer Translation Versus a Preferred System

698

699 Some have suggested that because high-speed digital computers can usually translate between different 700 coordinate systems, there is no need for a preferred system for spatial addressing. They contend that 701 computer systems will simply translate a coordinate value from any one of an infinite number of coordinate 702 systems that could be used by the community into one the operator can understand or use. In the real world, 703 this is a flawed concept. First, it will be some time before every citizen has a lap/palm top computer to use 704 for routine navigation. Secondly, it will not be possible to keep every citizen's computer updated with the 705 infinite number of coordinate systems that can be produced. It is analogous to cartographic anarchy, where 706 there are no recognized conventions. Some say the day of the paper map is over, but we have not achieved 707 the ``paperless environment." Paper will continue to be a critical medium for portraying and using

708	geospatial information. While digital information systems such as GPS, the Internet, and print on demand
709	paper maps will increase the ability of the community to use geospatial data, paper maps will continue in
710	widespread use. Maps require a common earth referenced coordinate system if people are to exchange
711	useful positioning information. A preferred spatial addressing convention is required just as a preferred set
712	of street names is used for street addresses. For example, street addresses simply would not be useable if
713	there were multiple names for each street. Accordingly, a preferred convention was necessary if the
714	community was to have a useable and workable spatial address system.
715	
716	Truncation and Variable Precision
717	
718	The UTM system most closely meets the USNG requirements and is:
719	
720	• A plane coordinate system, which is far easier to use than latitude and longitude for large-scale
721	work
722	• A geodetically referenced, mathematically uniform system in the public domain
723	• National and international in scope
724	
725	However, UTM does not provide a convention for truncating coordinate values, nor does it allow for
726	variations in precision of information. For example, although the USNG will support 1-meter precision,
727	many users do not need spatial resolutions finer than 10 meters for location and navigation and do not
728	require that coordinates be shown to all the decimal places to which they are stored in computers. In fact,
729	users find it easier to remember fewer digits. This is analogous to memorizing and recalling telephone
730	numbers.
731	
732	The MGRS was selected as a model reference scheme because it is a mature, widely used, off-the-shelf

system based on the UTM that also provides a method to truncate coordinates and offers various levels ofprecision. It is widely used on low cost GPS receivers. During its fifty years of use prior to the

Federal Geographic Data Committee United States National Grid (Public Review Draft) Annex G – Why the United States National Grid is Needed

735	introduction of the USNG it was taught to, and used by, millions of young men and women of various
736	education levels. It has often been used under highly stressful situations. This body of experience
737	demonstrated it is easily usable by the general population in both routine and highly dynamic situations.
738	
739	APPLICTION AREAS THAT POTENTIALLY WILL BENEFIT FROM THE USNG
740	
741	Enhanced 9-1-1. The USNG spatial address will complement the caller's street address on the screen of
742	Enhanced 9-1-1 system operators in Public Safety Access Points (PSAP). Officers on the street, who may
743	be equipped with either paper or digital maps that are properly gridded, can use the USNG spatial address.
744	
745	Disaster Relief Operations
746	
747	In the aftermath of natural or man made disasters, the devastation may be so great that street signs are
748	destroyed. Agencies not familiar with such areas find it exceedingly difficult to navigate to places in need
749	of assistance. USNG provides a nationally uniform method for describing a position that allows outside
750	assistance providers to ``hit the ground running" with GPS equipment and to use commercial street maps
751	that may be readily available and portray the USNG grid.
752	
753	Search and Rescue (SAR)
754	
755	The advent of technologies such as medical evacuation helicopters and wireless communications (i.e.
756	radios, Family Radio Service, cellular telephones, etc.) has increased the need to precisely and
757	unambiguously identify places away from the road network. For example, medical evacuation helicopter

759 night) in understanding SAR team descriptions of where they are supposed to fly. A preferred spatial

760 address system eliminates this communication interoperability problem.

761

758

crews have cited difficulties (while often flying in dangerous environments, i.e. mountainous terrain at

762 Use With Digital and Paper Maps

763

764 Digital maps from sources such as CD ROMs for use on desk/lap top computers and internet information 765 vendors have come into widespread use. The USNG has accuracy that ensures confidence that the point 766 indicated is the correct location. Today, it is possible to quickly access a source of maps on the internet. 767 With a USNG spatial address, the user precisely designates the point of interest by entering the spatial address as if it were a phone number (This has important implications for future cellular phone operations 768 769 and GPS/car navigation systems). The information provider can quickly respond with a map of that 770 location. The USNG also provides a coordinate system that can be portrayed on these maps when they are 771 printed ("print on demand"), thereby ensuring a geodetic reference for later use of the map with GPS. 772 773 Locating Small Business Features 774 775 Quite often, it is necessary to locate a small feature such as an Automated Teller Machine (ATM), the drop 776 off box for a package delivery services, or post office boxes. Today, automated sources of information 777 provided by the internet or by telephone indicate the location of the closest ATM or drop-off box, but 778 actually finding these small features can prove to be a difficult task. USNG spatial addressing will greatly 779 ease a customer's task by unambiguously communicating a point position of higher precision than possible 780 with conventional street addresses and will maximize current and future capabilities of GPS. 781 782 Locating a Street Address Number 783 784 Locating a street address number of buildings or homes can be a difficult task. This is especially true at 785 night or during heavy traffic. Street address numbers may be small, poorly placed, or missing altogether. A 786 virtual address defined by USNG enables the use of GPS or a map with a USNG grid. 787 788 Identifying Multiple Businesses Locations

A business with multiple locations in a community can add the spatial address for its establishments in telephone or Internet directories (or other sources of information). This information, coupled with commercial street maps that portray the USNG grid, will allow potential customers to quickly determine which establishment is closest. Customers will easily see the relative location of each store.

794

795 Outdoors Recreation

796

797 A great deal of outdoors recreation, such as backpacking, kayaking, hunting, fishing, rock climbing, cross-798 country skiing, snowmobiling, mountain-biking, and horseback riding, takes place away from the road 799 network and the conventional street address system. The widespread availability of low cost wireless 800 communications (i.e. cellular telephones, Family Radio Service transceivers, etc.) has increased the need for 801 a spatial address system that people can use to identify their location in a simple, uniform manner without 802 ambiguity. For example, in the event of an accident requiring medical assistance, USNG provides a 803 standard method for describing the unambiguous location of the accident to responding organizations. 804 Likewise, backpackers and others can report their USNG spatial address for a pickup point after a long 805 hike, adding flexibility to their plans. The USNG provides a universal means for identifying the location of 806 shelters, cabins, trail heads, springs, camping areas, parking areas, and other features in journal entries, 807 magazine articles, guidebooks, internet web sites and other sources of recreational information.

808

809 Agriculture

810

There is a need in agriculture to uniformly identify particular parcels of land for various work tasks. For example, a farmer communicating with a mechanic by cellular phone may need to clearly identify in which field a tractor has broken down. Another example is where the farmer has to instruct a deliverer of some commodity where to stage the material.

44

816	Tourism	

- 817
- 818 A uniform spatial address system will enable tourists to quickly and unambiguously locate a place of
- 819 interest. USNG locations will be noted in brochures and in other sources of tourism information.
- 820

XXX

820	
821	
822	
823	
824	
825	
826	
827	
828	
829	United States National Grid
830	Annex H (Informative)
831	Glossary

832	ANNEX H (Informative)	
833	Glossary	
834		
835	ANSI	American National Standards Institute
836	ATM	Automated Teller Machine
837	E9-1-1	Enhanced 9-1-1
838	FGDC	Federal Geographic Data Committee
839	GIS	Geographic Information System
840	GPS	Global Positioning System
841	GZD	Grid Zone Designation
842	DMA	Defense Mapping Agency
843	ISO	International Organization for Standardization
844	ITRF	International Terrestrial Reference Frame
845	km	kilometer
846	MGRS	Military Grid Reference System
847	mm	millimeter
848	NAD 27	North American Datum 1927
849	NAD 83	North American Datum 1983
850	NIMA	National Imagery and Mapping Agency
851	PLSS	Public Land Survey System
852	PSAP	Public Safety Access Point
853	SAR	Search and Rescue
854	SPCS	State Plane Coordinate System
855	USNG	United States National Grid
856	UTM	Universal Transverse Mercator
857	WGS 84	World Geodetic System 1984