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FPREFACE

Optimum utilization of ACIC research and production requires
that the accuracy of source material, interim and final products be
ronsidered. The accuracy is expressed by an error statement which
indlcates whether the product is relisble and acceptable or should
he used with discretion. Therefore, the error statement must be
representative of the product and have a scund statistical basis.
The purpcse of this paper is to present and explain the theory
and procedures for providing a valid and meaningful error statement.

The normal distribution of linear errors is explained in de-
tail because two and three-dimensionsl error distributions are
more ecasily analyzed statistically by individual treatment ol the
Linear components. The princlpies of Llhe linear error distribution
apply only to independent random errors, assuming that systematic
errors have been eliminated or reduced sufficiently to permit treat-
ment as random errors.

Although a truly circular or spherical error distribution seldom
oceurs in & samplc of observations, the concepts are desirable Tor
ease of computation and understanding. Conseguently, considerable
sttention 1s given to the computation of an approximate circular
or spherical error distribtution from unequal linear components ol
a two or three-dimensional error digtribution, yet retaining prop=
erties such as precision indexes of the truly clrcular and spherical
A4 stributions. Some characteristics of circular and spherical
error distributions differ from those of the linear error distri-
bution; however, the distinction is of an academiec nature and
hence 18 not emphasized in the text.

Orgenizations using ACIC charting products should find the
discussion helpful in interpreting statements of cartographic accu-
racy. The formulas and principles can also be applied to weapon
systen accuracy evaluation and other purposes provided that the
assumpblon of a normal distribution of independent random variables
ig feasible.

Importent Functions and equations are presented in the text,
while lengbhy derivations are relegabed Lo appendixes. Liberal
nusbers of references are inserted alter major headings to facilitate
further study.
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ABSTRACT

One of the most useful contributions of error theory
is the precision index which identifies the error distributicn
and specifies the probability that the true ervor in & guantity
does not exceed a certein value. This gituation is appllcable
to the evaluation of map and geodetic information, In that It
rmakes possible meaningful sccuracy statements having uniforu
interpretation, and ie compatible with established map accuracy
standards which specify Limits of permissible error in various
categories., Standardized procedures aud supportling theory for
computing linear, circular, and sphericel precision indexes
are presented. The recommended vrocedure for computing the
circular vr spherical standerd error from linear standard
errors in X and ¥, or X, Y, and 7 directions, respectively;
is to average the linear standard errors. Other procision
indexes in the pame error distribution are easily computed
from the linear, circular, and spherical standard errors --
the most important precision indexes.

viii



1. ONE-DIMENSIONAL (I.INFAR) ERRORS

1.1. Introduction. Various aspects of the sciences of geocdesy,

cartography, and photogrammetry involve the measurement of vhysical
quantities and the utilization of such measurements. Regardless of
the precision of the instrument, no measurement device or method
gives the true value for the quantity measured. Mechanical imper-
fections in instruments and the limitations introduced by human
factors are such that repeated measurements of the same quantity
result in different values. Variations among successive values

are caused by errors! in the observations.

While the theory of errors doecs not yicld a truc valuc
nor improve the quality of observations, it does provide a way of
estimating the most probable value for the guantity and of deter-
mining the ecertainty attributable to the estimate. Once this has
bheen established, a least squares sdjustment can be used to remove
or distribute the observational errors to obtain a solution which
is relatively free of discrepancies.

1.2. Classes of Frrors. (ref. 6, 19, 22) Errors fall into

three general classes which may be categorized by origin as

(1) vlunders, (2) systematic, a2nd (3) random.

1 The true error of each observation is the difference between
t+he true value of a quantity and the measured value.



Blunders are mistakes caused by misreading scales, trans-
posing figures, erronecus computations, or careless cobservers. They
are usuglly large and eagily detected by repested measurementgs.

Systematic errors follow some fixed law and are generally constant

in magnitude and/or sign within a series of observations. The
origin of systematic errors in gecdetic measurements i1s primarily
within the instrument or meesuring device. Causes of systematic
error include faulty instrument calibration, errors inherent in the
graduation of scales, and changes In performance resulting from
variations in temperature ané humidity. Systematic errors can be
eliminated or substantially reduced when the cause is known. Random
errors are those remaining after blunders and systematic errors have
been removed. They result from accidental and unknown combinations
of causes beyond the control of the cobserver. Random errors are
characterized by: (1) variation in sign -— positive and negative
errors occurring with equal frequency, (2) small errors occurring
more frequently than large errors, and (3) extremely large errors
rarely occurring.

The probability that a random error will not exceed a
certain magnitude may be inferred from an anelysis of the normal or
Gaussian distribution of an infinite number of rendom variables.

1.3. Basic Concepts of Probability. (ref. 2, 3) Probability

is defined as the frequency of occurrence in proportion to the num-

ber of possible ocecurrences, or simply, the ratio of the number of



successes to the number of trials. let A and B symbolize two
completely independent events. Denote P(A) as the probebility of
the event. "A" and P(B) as tre probability of the event "B". The
probability of any event happening must be between zero and cne.'
That is, zero probebility means that the particuler event will
never take plasce, and & probability of one means that the partic-
ular event will occur each trial. For example, the probability
of rolling the number 7 with a single die is 0.0 (an impossible
event), but the probability of rolling a number from and in-

cluding 1 through 6 is 1.0.

Rule 1. The probavility of event A is equal to or greater than

O but equal to or less thon 1.
<
o 2 PlA)

Rule 2. The probability of a failure, or the probability of an

event not occurring, is 1 minus the probability that it will occur.
1 - P(A} = fTailure of event A

Rule 3. The probability of either of two events A or B occurring

is equal to the sum of their individual probabllitlics.

P(an or 8) = P(4) + B(B)

1 Probability is also denoted by a percentage.



An example is the probability of either a 3 or &4 occurring on the

single roll of a die:
P(3or k) = 1/6+1/6 = 1/3

Rule 4, The probability of two events occurring simultaneously is

equal to the product of their individual probabilities.

P(A and B) = P(A) - P(B).
An example is the probebility of both A = 3 and B = 4 oceurring in

2 single roll of 2 dice:

P(3anda 4) = 1/6 - 1/6 = 1/36

The probabilities of occurrence of the numbers summed from
each of 36 possible combinations resulting from the single roll of
two dice are presented in Figure 1. The probability of rolling the
number 7, for example, is 6/36 or 1/6 since there are six combi-
nations which have a sum of seven. A histogram' of the data
approximates the area under a superimposed smooth curve. If the
number of dice in a single roll were increased, the histogram
would rapidly approach the smooth curve, called the normal proba-

bility density curve.

1A column is constructed for each number by blocks each
representing an ares equal to 1/36 probabiliity.
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1.4, The Normal Distribution of a Continuous Bandom Varisble.

(ref. 3, 24) The area under the normal probability density curve
(Figure 21) represents the total prebability of the occurrence of
the continuous random variable x and is equal to one, or 100%.
The mathematical expression of the curve is the normal probabllity
density function, p(g):

(- w)°

p(x) = —— e 26° (1-1)

g NZx

where: X = the random variable
p = a parameter representing the mean value
of x
¢ = @ parameter representing the standard

deviation, & measure of the dispersion
of the random veriasble from the mean,
u. (The square of the standard devia-
tion it ecalled the variance.)

Jox

e

2.5066 . . .

H

the base of natural logarithms, 2.71828...

The parameters are computed from an infinite number of random

variables:

—— (1-2)



o = (1-3)

where:
n = the number of random variablces, and
n—# e .

The normal probability distribution function determines

the probability that the random variable will assume a value
within a certain interval and is derived from the normal proba-
bility density function by integrating between limits of the

desired interval. Letting the limits range from - @ to X:

X
P(x) = p(x) dx
= (x - u)?
1 -
P(x) = ¢ dx (1-01)
N -

The value of P(x) ranges between O and 1, illustrated in Figure 2b.
As x approaches its upper limit, P(E) approeches 1; as x approaches
its lower limit, P(z) approaches zerc. This is true since X cannot

exceed nor be less than its defined limits.



p(x)

1)
Figure 2a

Normal Probability Deneity Curve

FPigure 21

Normal Probability Distribution Curve

1%
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1.5. Application of the Probability Denslity Function to Random

Errors. (ref. 3, 15, 21, 22) The normal probebility density curve
of an infinite number' of messurements of the unknown gquantity X is
expregsed by parameters analogous toc those of equation (1-1). The
true value By is the mean of the distribution of the observed

values X, X, X3 »++ X . The curve, illustrated in Figure 3, has

the mathematical form:

(% -u )’

2
1 - 2d

p(X) =

o JEﬁ
n
YRy -y
i=1
where: o = n

The normal probability density curve of errors has a mean of zero

(1-5)

and is identical in form to that of the observed values. Illustrated

in Figure 4, the curve is described by the function:

2
<
-2
1
ple) = e 2° (1-6)
o Non
where: ¢ = the true error;

E“Xi"px

¢ = the standard devistion of the errors, here-
after design%ted the standard error;

Y
1=1

n

2 -

t The population or universe in statistics.

9



Since the true value of a quantity cannot be measured and
an infinite number of measurements is impractical, estimated values
obtained from a finite number or ssmple' of measurements must be
subgstituted for the true value and the parameters of the density
function. The most probable value (i) approximates the true

value and is determined from the arithmetic mean® of observed values:

X = S (1-7)

The true error is approximated by the residual "x"*, hereafter

dcaignated the crror and defined as the differcnce between the

observed value and the most probable value:

x = X, -X (1-8)

The standard error computed from a sample (ox) is identified by

a subscript'and computed from:

J L.t
i=1
Ux - n-1

'As the number of measurements in the sample becomes larger, the
reliability of the estimate increases. Often, 30 values provide an
adequate estimate.

(1-9)

? 8ee Appendix B.
1 The residual 1g represented by "v" in some texts.

4 The standard error derived from a sample is designated in some

"t

texts by "s" or "m".

10




The normal probability density function of errors now becomes:

plx) = e X (1-10)

The parameters X and Oy Mey assume different values as
various samples are sclected from the same population and are,
therefore, random varisbles with dispersion expressed by similar
parameters. The standard error of the mean, oi , and the

standord error of the gstandard error, c indicate the

g *

relisbility of the estimate and help "round off" the computed

Z B
n(n- 1) = (1-11)
\/z (x, - 0
i=1 o,
(1-12)

2 {n - l) N2 (n - 1)

values:

51

i
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1.6. Precision Indexes. {ref. 3, 22) A precision index reveals

how errors are dispersed or scattered sbout zero and reflects the
limiting megnitude of error for varioue probabilities. For example,
50% of all errors in & series of measurements do not exceed 20
feet; 90% do not exceed 49 feet. Although different errors are
given, each expresses the same precision of the measuring process
(Figure 5). The standard error and average error (7) are two
indexes with theoretical derivations. Common usege has included
three additional probability levels which are, in effect, preci-
sion indexes: (1) probable error (PE), (2) map sccuracy standard
(MAS), and (3) the three sigma error (3¢).

The standerd error is the most important of the indexes

end has the probebility of':

P(x) = p(x) ax = 0.6827 {1-13)

Or, 68.27% of all errors will occur within the limite of # Ty

The average error is defined as the mean of the sum of the

absolute values of all errors:

n
Z f(x; - %)
n = izl = ..._E__'ﬂ._ (1-14)
n n

The probability represented by the average error 1s C.5751, or

57.51%. The average error 1s easlly computed from the standard error:

n = 0.7979 o, (1-15)

1k



The probsble error is that error which 50% of all errors in

a linear distribution will not exceed. BSpecifically, the true error
is equally likely to be larger or smaller than the probable error.
Expressed methematically:
b
PE -f p(x) dax = 0.50 (1-16)
a

The probable error is computed from the standard error:

2
PE = 0.6745 —Zi‘-i = 0.67%5 o, (1-17)

n -
The U.S. National Map Accuracy Standards specify that no
more than 10% of mep elevations (a one-dimensional error) shall be in
error by more than a given limit. The standards are commonly inter-
preted as limiting the size of error of which 90% of the elevations

will not exceed. Therefore, the map accuracy standard is represented

by:

b
MAS ==f p(x) dx = 0.90 (1-18)
a

or, computed from the standard error:

MAS = 1.6449 o, (1-19)

The three sigma error, as the name implies, is an error

three times the magnitude of the standard error. The 30 error is
used because it approaches near-certainty — 0.9973 or 99.73%

probability.

15
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1.7. Conversion Factors. (ref. 20, 27) Since all precision

jndexes are related to the standard error (Table I), factors
compitted from this relationship (Table II) will convert the

error at a given probability to the error at another probability.

Table 1

Summary of Iinear Precision Indexes

Symbol Probability Derivation

TE .5000 0.6745 o,

n 5751 0.7979 oy

o, .6827 1.0000 oy

MAS .9000 1.6449 oy

30 9973 3.0000 oy

Table II
Linear Error Conversion Factors
To

From 50.00% | 57.51% | 68.27% 90,00% 99.73%
50.00% 1.0000 | 1.1830 | 1.4826 2.4387 L, 4475
57.51% 0.8453 | 1.0000 | 1.2533 2,0615 3.7599
68.27% 0.674%5 | 0.7979 | 1.0000 1.64h9 3.0000
90.00% 0.4101 | 0.4851 | 0.6080 1.0000 1.8239
99.73% 0.2248 | 0.2660 | 0.3333 0.5433 1.0000

17




1.8. Propagetion of Errors. (ref. 5, 29) A quantity f; is

computed from two meassured quentities a and b, where f(a,b) denotes
& functicn of a and b. The error Af of f; is affected by the errors
in both & and b: As and Ab., Assuming a and b are independent, and
the errors Aas, Ab are randomly distributed, the combined error Af

can be computed by the generel eagquetion:

2 2
al” 2  [af] o
\/(aa) O'a + ab O-b (1-20)

O'f =
where: gp = the standard error of f
%) ab = the gtandard errors of a and b
%f, %f = partial derivatives of [, wlth respect Lo
a ob

a and b.
Application of the general equation to specific conditions produces

the following rules' for the function f{a,b):

Rule 1. 8Bum and Difference

£ (e +b) orf = (a=-b)

2 (1-21)

i
Q
+

Op ) e

tDerivations lo Appendlx C.

18



Rule 2. Product of Factors

f = g%pd

o i ik
RS - (._.ﬁ) +q° _b) (1-22)
£ a b

Rule 3. $Simple Product or Quotient

f = ab or £ = afp

2
[#2
-2 (1-23)
b

2
% - % .
T a

Indexes olher than the standard error can be used to

propagate errors. For example, using Rule 1:

(PE), = -\ﬁPE)f + (PE), 2

e =\ /Mg * My

(ms)f =-\/(ms)aa + (ms)b2
and (30), =7\ [ (30),% + (3002

However, note that the index must be consistent throughout the

formula. That is:

(PE), ' d 1M/ZPE)a2 + °b2

19



ur #\ﬁMAS)f + (30),,°

ete.

1.9. Fxamples of Linear Brrors. The foregoing discussion demonstrates

the use of the normal distribution in the analysis of random errors.
There are numerous opportunities for the occurrence of random variables
in cartographic and geodetic work. TFor example, the base lines and
measured angles, observed lengths of lines, elevations, etc., resulting
from geodetic triangulation, traverse, and leveling all contain error.
The same is true of celestial and gravimetric observations as well as
distances measured by trilateration. The principles of error thecry
can be uscd advantageoucly to analyze the results in terms of the
specifications established for the survey.

In ACIC, the normal linear error distribution has important appli-
cations with respect to evaluating the accuracy of positional informa-
tion. In addition to the one-dimensional errors which exist in such
positional data as elevations above mean sea level, the linear error
cormponents of two and three-dimensional positions caﬁ be analyzed by
applying principles of the normal linear error distribution. The follow-
ing sections contain discussions of the utility of the linear standard

error for analyzing two and three-dimensional distributioms.

20



2. TWO-DIMENSIONAL (ELLIPTICAL, CIRCULAR) ERRORS

2.1. Introduction. A two~dimensional error is the error in a
quentity defined by two random variables. For example, consider
the true geographic position of & point referred to X and Y axes.
Each observation of the X and Y coordinates will contain the errors
"x" and "y". When sssumed rendom and independent, each error hes a

probability density distribution of:

2
- X
1 2.2
p(x) = — e X
Uy N 2%
and
2
Y
- 2
1 2
ply) = —— e %
a:Y 421t

Applying Rule 4 of Section 1.3., the two-dimensional probebility

densitz function becomes:

2 2
N e S A
1 2\ g2 g2
px,y) = — e x y (2-1)
en o, oy
Rearrsnging terms:
2 2
1 X 3
- — —-—2 +
2| a/ cye

plx,y) a0y 20 = e

21



Therefore:
2
b's
-2 1n [p(X,y) oy Oy 2#] = =3 + -12 (2-2)

For given values of v{x,y), the left side of equation (2-2) is a

constant K?
Then:
2 2
¥ = Y
= ~3 + ~ 3 (2-3)
Ox Oy

For values of p{x,y) from O tow, a family of equal probability density
ellipses are formed with axes K oy and K Oy
When oy = cy, equation (2-2) becomes:

..20x2 1n[p(x,y) cfxa 21(] = x2 + y2 (k)

For & given value of p(x,v), the left side of equation (2-4) is a
constant which is the square of the radius of en equal probability
denslty circle.

The probability density function integrated over a certain region

becomes the probability distribution function which yields the proba-

bility that x and y will occur simultaneously within that region, or:

P(x,y) = f_[p(x,y) ax dy

However, since both positive and negative values of either "x" or 'y

will occur with equal frequency, the errors mey be considered as radial

errors, deslgnated by "r", where r = ~x2 ¥v2,

22



2.2, Elliptical Errors. (ref. 15, 20) The probabllity of an

ellipse is given by the distribution function:

K

Px,y) = 1-e 2 (2-5)
The solutlon of eguation (2-5) with values of K for different proba-
bilities yields the results shown in Table III. For a 39% probability,

the axes of the ellipse are 1.0000 o, and 1.0000 Oy3 for a 50% proba-

bility, the axes are 1.1774 oy and 1.177Th oy

Table III

Values of the Constant X

Probability X
39.35% 1.0000
50.00% 11774
63.21% 1.41ke
90.00% 2.1460
99.00% 3.0349
09.78% 3.5000

The use of the error ellipse is complicated by the problem
of axes orientation and propagation of ellipticel errors. Therefore,
the ellipse is commonly replaced by & circular form which 1s easier
to use and understand.

2.3. Circular Errors.

2.3.1. Circular Probability Distribution Function. (ref. 1,

24k} The probability distribution function of the radiel error
expressing the probability that "r" will be equal to or less then
radius R, or the probability that the vector xy will be contained

within & cirele of radius R, is derived in Appendix D and stated as:

23



R T o
- — A
hg o 0 ? e 0.2
X e
P(R) = pon re ¥ I, > 5 - 1 dr (2-6)
Xy g 0,
0 ¥y

A special case of the P(R) function {2-6) is formed when r=R,

and 0y=0,=0, E Og. From Appendix D, part 2:

RE
BR) = P, = 1-e (2-7)
where:
Pc = the circular probability distribution function, a special
case of P(R)
R = the radius of the probability circle
0, = the circular standard error, a special case of o, when
O, = Oy = Oy.
When g, end o, are not equal, the P(R) function, (2-6), 1is
modified by letting "&" equal the ratio Sﬁ vhere g, is the smaller

%
standard error of the two. Then from Appendix D, part 3:

X
2
P(R) = 2 f eV I, (vk) dav (2-8)
1+ aa
0
where:
. R2 1+ aa
x =
2 2
hay a

2k



r 1 + a
voE o o
ha a
¥
1l - a2
x =
1l + 32

Equation (2-8) can be solved'! for different probabilities or values
of P(R)} representing precision indexes of the error distribution.

2.3.2. Circular Precision Indexes. (ref. 19, 20, 27} The

precision indexes illustrated in Figure 6 are measures of the disper-
sion of errors in a distribution and represent the error which is
unlikely to be exceeded Lor a glven probebllity. The preferred cir-
cular precision indexes, consistent with indexes used in the linear
distribution, are: (1) the circular standard error {o,), {2) the
circular probable error (CPE, OFP), (3) the ecirrular map accuracy
stendard {CMAS), and (4) the circular near-certainty error, three-five
sigma (3.5 0,). The mean square positional error (MSPE), an additional
index which has been used at ACIC, is not recommended because the proba-
bility represented varies when gy and oy are not equal.

The probability of the circular standard error is

found by solving equation (2-7) for P, when o, = R, thus:

! Described in Appendix D, part 4.
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VIR I

1 - 0.60653

o
"

0.3935 (2-9)

That is, 39.30% of all errors in a circular distributlon are not
expected to exceed the circular stendard error.

For & truly circular distribution, the linear
gtandard errors are enqual and identical to the circuler standard
error (o, = o, = 0,). When o, and oy are not equal, a normal
circular error distribution mey be substituted for the elliptical
distribution. The substitution is satisfactory for error enalysis
within specified Umin/cmaxl ratios. Because of distortion in the
error digtribution ? for low ratios, however, the circular concept
should be used with discretion.

An spproximate circular standard error is
determined from equstion (2-8) by letting P(R) = 39.35% and R = o,.
Values of Uc/Umax for ratios of o, /Onax from 0.0 to 1.0 are con-
tained in Table IV and plotted in Figure T. For the opn/0pqx Tatio

between 1,0 and 0.6, the curve ig a etraight line with the equation:

! Where Onin is the minimum or smeller linear standard error of the
two.

2 See Appendix F.
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0o ~ (0.5222 opqn + O.BTT8 opgx) (2-10)

A rapid approximation gives a slightly larger o, value for the same

Omin/omax ratio:

0, ~ 0.5000 (o, + oy) (2-11)

As opin/Onex &pproaches zero, the 39.35% probability curve follows &
transition from circular, through elliptical, to the linear distri-
bution form.! The curve does not effectively represent a circular
standard error for Umin/cmax ratios less than 0.6 because it is not
compatible with other circular precision indexes. TFor example, the
factor 1.1774% converts a circular error at 39% probability to a

eircular error at 50% probaebility when % 1.0, but when

in/omax =
Opin = 0, the factor converting a linear error at 39% probability

to & linear error at 50% probability is l.309k.' The circulsr stand-
ard error computed from equation {2-11), however, can be converted
to other circular precision indexes by constant circular conversion

factors * for Opin/Omax ratios between 1.0 and 0.2 and is, therefore,

the preferred method for approximating the circular standard error.

!When ¢,; = 0, the factor 0.5151 converts & linear error &t 68%
probability to an error at 39.35% probability.

t The transition curves of conversion factors are shown in Figures
10 and 11.

3 Presented in Section 2.3.3.
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Although 1t is not recommended because of limited
epplicability and extra computation required, an approximate v, may be

computed by an alternate method:

(2-12)

when 0y, /00, 18 between 1.0 and 0.8

The circular probeble error is the circular error

which 50% of all errors in a circular distribution will not exceed, or
the value of R in equation (2-7) which mskes P, = 0.5. The CPE (or CEP)

in a truly circular distribution {(1.e. Oy ® O, ® oc) is computed by:

y
52
B 2g 2
0.5 = 1 - e ¢
52
-5
1 - 0.5 = e 20¢
2
1n 0.5 = - =
UC
R = 0.69315 (2002)

R = 1.177k o,

CPE = 1.177h4 a, (2-13)
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When oy and Oy

equation (2-8) by letting P(R) = 50.00% and R = CPE, Values of CPE/g.

are not equal, an approximete CPE is determined from

for ratios of Opin/Opeyx from 1.0 to 0.0 ere tabulated in Table V. The
50% probability curve plotted in Figure 8 is approximated by & series of

straight lines for different ratios of Umin/omax with the equations:

CPE ~ (0.6142 oy, + 0.5632 Oppx) (2-14%)

when op,. /o 18 between 1.0 and 0.3

CPE ~ (0.4263 g, + 0.6196 gy, (2-15)

when cmin/c is between 0.3 and 0.2

A rapid spproximation of the CPE plote asg a straight line which inter-
sects the 50% probability curve at the point where °min/°max = (0,2 and
has the equation:

CPE ~ 0.5887 (oy + oy) (2-16)
when o, /o 1is between 1.0 end 0.2

The CPE computed by equation (2-16} is compatible with the circular
standard error computed by equation (2-11)' and is, therefore, the
preferred method for spproximeting the circular probable error within

the gpecified limits.

1 That is, the conversion factor of 1.1774 for converting o, to
CFE is constant for ratios of Omin/Opey Detween 1.0 and 0.2. Note that

1.1774 [0.5000 (oy + cry)] = 0.5887 (o, + cry).
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Although a circular error concept is not recommended for “min/umax
ratios less than 0.2, & near-linear 50% probability error may be
computed to represent a CPE for lower ratios when a comparison of

circular errors derived from different sources is required:

CPE ~ (0.21k1 g, + 0.6621 op,y) (2-17)

when amin/omax is between 0.2 and 0.1

CPE ~ (0.0900 opyy + 0.67L5 opgy) (2-18)
when Umin/omax is between 0.1 and 0.0

CPE ~ 0.6T45 op,, (2-19)

when Opin = O

The following alternate methods of computing an approximate CPE are

not recommended because of limited applicability:

. 2 + O 2
CPE ~ 1.1774 -’"‘”;—L (2-20)
2 2
and CPE ~ 0.8325 ax” + 0y (2-21)

when 0,;,/0,., 15 between 1.0 and 0.8

The mean square positional error {(ref. 1, 11) is

defined as the radius of the error circle equal to 1.4142 ¢, and has
1little significance in a Lruly clrcular error distribution. However,
when oy and Oy are approXximately equal, the MSPE defines the error in

a geographic position and is computed:
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2
MSPE = o, + Uy2 {(2-22)

when op 5 is between 1.0 and 0.8

n/ Oma.x

The probability represented by the MSPE can be found by solving equa-
tion (2-7) for P_, when R = MSPE and a. is approximated by equation

{2-11), thus:

RE
- 2
P, = 1-e 20,
2 2
) (o, + o )
2
P, = 1-e 20 (2-23)
When 0, = oy:
- 1.0
Pc = ] - @
= 1 - 0.3679
P = 63.21% (2-24)

When o, # Oy the solution of (2-23) ylelds values of P, (plotted in
Figure 9) ranging from G%% when Umin/dmax = 0.8 to T7% when “min/cmax
= 0,3. Because of the variation in probsbility, the MSPE is not

recommended for use as a precision index.

The circular map accuracy standard is based on the

percentage level in use by the U.S. National Map Accuracy Standards

31



which specify that no more than 10% of the well-defined points in &
map will exceed s given error. The stendards are commonly interpreted
ag limiting the gize of error whiech QO% of the well-defined points
will not exceed. Therefore, the circular mep asccuracy standard is
represented by the value of R in equation (2-7) when P, = 0.90, and

is computed:

CMAS

[E

2.14%60 a, (2-25)

or CMAS

it

1.8227 CPE (2-26)

The three-five sigma error, representing a

circular provebility of 99.78%, approaches near-certainty in a circular
distribullon and has a magnitude 3.5 times that of the circuler stand-

ard error.
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Figure 6

Normal Circular Distribution
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Table IV

Solution of P{R) Function for P(R) = 39.35%

Omin 9
Tmex Omax
1.0000 1.0060
0.8165 0.9063
0.654T 0.8197
0.5000 0.7323
0.3333 0.6327
0.2294 0.5727
0.1005 0.5274
0.0 0.5151

Note: When P(R) = 39.35%, R ~ 0.

kL
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Table V

Solution of P(R) Funetion for P(R) = 50.00%

Omin CPE
Umax Gmm{
1.000 1.171h
0.8165 1.0683
0.65h7 0.9690
C.50G0C 0.3707
0.3333 0.7696
0,220k 0,717
0.1005 0.6835
0.0 0.6745

Nete: When P(R) = 50.00%, R ~ CPE
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(ref. 20, 27) The

2.3.3.

relationships of the circular standard error to other circular pre-

Circular Conversion Factors.
cision indexes are summarized in Table Vi. Conversion tactors (Table
VII) computed from these relstionships convert & circular error at a
given probability to a circular error at another probabillty. When a
circular error distribution is substituted for an ¢lliptical distribu-
tion, the circular conversion factors are retained.

Table VI

Simmmary of Cirecular Precision Indexes

Symbol Probability Derivation

Co -3935 1.0000 @,

CPE, CEP .5000 1.177% o,

MSPE .B321 1.h1ke G

CMAS .9000 2.1460 9,

3.5 04 L5978 3.5000 o,

Table VII
Circular Error Conversion Factors
To
From 39.35% 50.00% 63.21% 90.00% 99.78%

39.35% 1.0000 1.1774 1. k1ke 2.1460 3.5000
50.00% 0.8493 1.0000 1.2011 1.8227 2.9726
63.21% 0.7071 0.8325 1.0000 1.517h 2, 47hg
90.00% 0.4660 0.5486 0.6590 1.0000 1.6309
99.78% 0.2857 0.3364 0.4oko 0.6131 1.0000

b1




2.3.4. Propagation of Circular Frrors. (ref. 5, 29) A two-

dimensional quantity derived from a number of independent variables has
a circular error resulting from the errors in each variable. The total
circular error is determined by propageting the linear components in
each of the two dimensions by methods described in Section 1.8., and
computing the circular form by the procedure shown in Section 2.3.2.

For example, the total circular error of a quantity CT’ derived from

Cp=0Cq + 02 + .. Cyy is found by:
g = “M/c 2 + 0 2 + o 2
X X Xo T TXq
- 2 2 2
UYT jv[oyl + cyz + ... cyn
o = 0.5000 {o, + o_ ) (2-27)
e *p Jp

An alternate approximate propagation method combines the circular error

of each independent variable directly, thus:

= 2 2 2 -
UCT ﬁw/ocl + ch + ... Ucn (2-28)

Precision indexes other than the standard error may
be used; however, the index must be consistent throughout the computa-

tions.
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3. THREE-DIMENSIONAL {ELLIPSCIDAL, SPHERICAL) ERRORS

3.1. Introduction. A three-dimensional error is the error in a
guantity defined by three random variables. Expanding on the example
irn Section 2.1., & point is referred to X, ¥, and Z axes which estab-
1ish the spatial position of the point. When random and independent,
the errors x, ¥y, and z each have a linear probabllity distribution.

The three-dimensional probability density funetion is expressed by:

1 X2 y2 z2
S S-S B 5
1 2 Lo~ y 05

H
41

P(X:Y: Z)

Poleo

{2n) a, 0, ¢

Similar to Section 2.1., the probability density function can be written:

. X2 y2 22
W = "'—é‘ + 2 + "“E (3_2)
o] o, g
b y Z
where: 3
o 2
W- = -2 1in [p(ny)Z) Oy Uy o, (2x) ]

For values of the constant We from O = @, the density function deTines
a Tamily of ellipsoids of equal probablility density.

3.2. Ellipsoidal Errors. (ref. 15, 20) The probability of an error

ellipsoid is given by the probability distribution funetion:

2

W
1
“ -t
P(s) =\/—-§_f e 2 ot (3-3)
0]




where: s = the radial error; s = x° + yg + 2@
t = —2
3
2
Oyg
O... = standard error of the radial error "s"

rs

The solution of equation (3-3) for W yields the velues given in Table
VITI.
Table VIII

Values for the Constant W

Probebl Lity W ]
19.9% 1.000
50 1.538
0.8 1.739
90 2.500
9% 3.368
99.89 | k.000 |

3.3. Spherical Errors.

3.3.1. Spherical Probability Distribution Functicn. (ref.20)

When @, = d, = 0, = Op5 5 O equation {3-1) becomes the spherical prob-

ability density function:

o
_ )
1 2
p(s) = 3 e 2% (3-1)
(21)? o >

Lk



where: o, = spherical standard error
Integrating p(s) from s = 0 to s = S, equation (3-4) becomes the spheri-

cal probability distribution function:!

52
2 -
B 8 2
2 5 20’2 e 208
P(S) =\/7]E (’c?;) -e U8+ B ds (3-5)
O
where: § = radiug of the probability sphere

Fquation {3-5) can be solved Ly an approximation formula (ref. 121,

13):

no

o
2
P(8) ~ \/j 1.253 - Ce - 0. ke (3-6)
n 0+ 0.8e
5
= D’s

2
c.
2

where: C

3.3.2. Spherical Precision Indexes. (ref. 20, 27) A spheri-

cal error distribution is represented by indexes similar to those in Sec-
tioneg 1.6. and 2.3.2. Preferred spherical precision indexes include:

(1) the spherical standard error (o4}, (2) the spherical probable error
(sPE), (3) the spherical accuracy standard (SAS), and (4) the spheri-
cal near-certainty error, four sigma (hcs). The mean radial spherical
error (MRSE), an index which has been used at ACIC, is not recommended
because the probability represented vearies when d,, oy, and o, are not

equal.

! See Appendix E.



The probability of an error sphere of radius equal

to the spherical standard error is computed by equation (3-6) for the

condition C = éi = 1 as follows:
s
)
*\/(;_ = 0.,7978846

1

e ° = 0.60653
e

e © = 0.67032

0.86°0 % = 0.53626

P(S) ~ 0.79788 (1.253 - 0.6065 - 0.3948)
", P(8) ~ 0.20 or 20% ' (3=7)
For a truly spherical distribution, the linear sland-
ard errors are equal and identical to the sphericael standard error

(UX =0, =0, US). When o,, 0y, and o, are not equal, the spherical

m

standard crror ic spproximated by:

o5 ~ 0.3333 (og + o, + 0,) (3-8)

when o . /Op.y 18 between 1.0 and 0.35
The substitution of a spherical form for an elliipsoidal distribution is
not recommended when the Umin/cmax ratio is less than 0.35.
The following alternatc mecthod of approximoating og

is not recommended because of limited applicability:’

1 A more accurate value is determined by an expansion in series to
be 19.9% probability.

* Figure 12 compares curves computed from equations (3-8) and (3-9).
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[s]
0, " + o2 + 0,2
oy ~] ——L—— (3-9)
g 3 B
when °min/°max is between 1.0 and 0.0

The spherical probable error is defined asg the

magnitude of the spherical radius S when the function P(S) = 0.5 or
50%. Expressed in the form 8 = C Og, the spherical probable error is

computed by:

SPE = 1.5382 o (3-10)

The P(R) function for two-dimensional errors is solved by the use of
Grad and Solomon's tables.'! Expanding this method intoc the sphericel
distridbution, the radius § for a 50% probability sphere (SSO%) was

and o and

min/omax mid/omax

computed in terms of oy, for ratios of o
tabulated in Table IX.*! Utilizing these values, an approximation of

the spherical probable error can be computed: ”

SPE ~ 0.5127 (ox + 0y + 0g) (3-11)

when Umin/Umax is between 1.0 and 0,35

The mean radiel spherical error is the redius of

the error sphere equal to 1.732 og, or~ 3 05, in a truly spherical

distribution. When oy # Gy ¥ Gy the MRSE 1s compuled Ly:

! See Appendix D.
twhere: Opin = the minimum sigma, or smellegt standard error of
the three,
Opax = the maximum sigma, and
Inid = the middle sigma.
! Note that 1.5362 [0.3333 (UX + cy + cz)] = 0.,5127 (Ux + o, + UZ).

by



MRSE ~ ﬁy/' T Y >
o to, *+o, (3-12)

when Umin/gmax is hetween 1.0 and 0.9

The probabilities represented by the MRSE are computed by eguation
1

(3-6). Because of the varistion in probability,”’ the MRSE is not

recommended for use ag a precisgion index.

The spherical sccuracy standard is defined as

the magnitude of the spherical radius S when the function P(S) =
0.9 or 90%. Expressed in the form 8 = C oug, Lhe spherical accuracy

steandard is computed by:

SAS = 2.500 og (3-13)

The four sigme error, representing a spherical

probability of 99.80%, approaches near-certainty in a spherical
distribution and has & magnitude four times that of the gpherical

standard error.

1 Tllustrated In Figure 13.

*Yhen 0, = 0, = 0y, the probability is 60.82%; when o, = 10,

X ¥

oy = 3, and g, = 6, the probability is 69.36%.
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Table IX

Solution of P(S) Function for P(8S) = 50.00%

o . o, -
oZ;i oz;: SR~ oo SPE *'zéiifzg(zza; :yl+ a,)
0.866 0.866 1.4016 O ox 1.4007
1.0 0.707 1.3892 o, 1.3879
Q775 0.632 1.2381 op.y 1.2341
0.577 0.577 . 1.1016 0 ox 1.104k4
0.894 0. 447 1.210% o 1.2002
0.707 0.408 1.089% o0, 1.084k
0.535 0.378 0.9791 o,y 0.9808
0.354 0.354 0.8689 opax 0.8757

kg
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3.3.3. Spherical Conversion Factors. (ref. 20, 27) The

relationships of the spherical standard error to other spherical pre-
cision indexes are summarized in Table X. Conversion factors {Table
XI)} computed from these relationships convert a spherical error at a

given probability to s spherical error at anocther probability.

Table X

Summary of Spherlcal Precision Indexes

Symbol Probability Derivation
Ou . 199 1.000 ag
SPE .50 1.538 og
MRSE .608 1.732 og
SAS .00 2.500 og
b oo .9989 4.000 o

Table XI

Spherienl Error Conversion Factors

From ° 19.9% 50% 60.8% o0% 99.89%
19.9% 1.000 1.538 1.732 2.500 | k.000
50% 0.650 1,000 1.126 1.625 | 2.600
60.8% 0.577 0.888 1.000 1443 | 2,309
90% 0. 400 0.615 0.693 1.000 | 1.600
99,89% 0.250 0.385 0,433 0.625 | 1.000

PR
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3.3.4. Propagation of Spherical Errors. (ref. 5, 29) A

three-dimensional quantity derived from a number of independent
variables has a spherical error resulting from the errors in each
variable. The totel spherical error 1s determined by propagating
the linear components in each of the three dimensicns by methods
deseribed in Section 1.8., and computing the spherical form by the

procedure shown in Section 3.3.2. For example, the total spherical

error of a quantity ST’ derived from ST = Sl + 52 + ... Sn is found
by
= o . (o2
X Xq X5 Xy
g = o 2 +a 2 + o z
= 2 z 2
o = g + o + . O
Ze, —\/rzl Z, z
o £ 0.3333 "G + + g, ) 3-114-)
S B () )| (

An alternste spproximate propagetion method cembines the spherical

error of each independent variable directly, thus:

) 2 2 5 :
o, = h\/gs Ot O (3-15)

Precisicn indexes other than the standard error may

be used; however,the index must be congistent throughout the computa-

tions.



L, APPLICATION OF ERROR THRORY TO POSTTTONAT. INFORMATTON

4,1, Positional Errors. By the use of error theory in the eval-

uation of ACIC positional informaetion, it is possible to establish a
meaningful accuracy statement subject to uniform interpretation. To
provide a logical and acceptable basis for computation and compariscn,
positional errors are assumed to follow a normal distribution. The
assumption is valid because positional error components generally
follow a normal distribution pattern when sufficient data is avallable.
Thne statistical trealmenl of errors is applied to measurablc gquonti-
ties found in the sources of positioning information. The differences
between the surveyed coordinates of ground contrcl and the scaled co-
ordinates of the game control symboliized on maps are considered to be
the errors in the geodetic base of the map. Analysis of the linear
components — latitude and longitude or grid Northing and Pasting —
provides a two-dimensional expression of the accuracy of the geodetic
base. When all the linear standard errors occurring during map con-
struction are combined and converted to a circular digtripution, the
final map accuracy statement is expressed in terms of circular errors.
Among the positioning errors in maps, there are often those which
are not measurable and which musl be estimated by empirical methodo.
When this is necessary, an additional assumption must be made to the
effect that such data is compatible with computed data and that empiri-
cally derived error data will also fnllow the theoretical error dis-

tribution.

Sh



Various types of polnts require different parameters to establish
vrecige positions. These have been discussed as one, two, or three-
dimensional coordinates. Tor example, a vertical position {elevation)
regquires only a one-dimensicnal ccordinate — the height of the point
above a reflerence datum; a gecdeltic position is expressed by two-
dlmensional coordinates — latitude and longitude referenced to a
specitic datun; and spatial positions require three-dimensicnal coor-
dinates such as the x, y, z coordinates in a rectangular system. The
errora accumulated in the process of determining the various positions
must De evaluated in the same dimensions reguired to express the posi-
tion. Errors for vertical positioning can be assumed to follew a normal
linear distribution; those for a zecdetic pesition — a cirecular dis-
tribution; and the orrors for a spatisl point can be assumed to follow
a normal sphnerical distribution.

4.2, The Accuracy Statement. Two major groups of data fall within

Alr Force positioning requirements: (1) maps, charts, and other graphics;
ang (2) specitic points. By the use of error thecry, a horizontal ac-
curacy evaluation of the graphic as a whole can bte obtalined, i.e., a
specified probability that the true errcrs in well-defined planimetry
will not excced the given guantity. Map accuracy can also be inter-
preted as percentage — the percentage of well-defined points which

will not contain errors exceeding the given magnitude. Similarly,
vertiral aceuracy is stated as a given pronanility that the linear

errors in vertical position are not likely to exceed a specified value,



The accuracy of a specific point is expressed also by a statemeni of
probability and error megnitude. The accuracy statement does not mean
that the error in position is exactly the value shown, rather it ex-
presses the probability that the true error in position will not be
larger than the error given.

Positional error should be expressed by precision indexes which
immediately identify the form and probvability represented by a given
error. TFor example, let the circular probable error (CPE) of a geodetic
position egual 100 feet. Then the form is circular. The magnitude 100
feet and the probability (50% by definition of CPE) are derived from a
statistical trestment of known or estimated error components comprising
the total positional! error. The statement infers a 50-50 chance that
the gecdetic position in question does not vary more than 100 feet from
the true geodetic position. When the error magnitude is increased by a
statistical factor, greater probability is achieved. Multiplying 100
feet by 1.8227 yields a 90% probability that the positicnal error will
not exceed 182 feet.

Errors in different forms are more easily understood when precision
indexes common to linear, circular, and spherical error distributions are
used. Precision indexes sultable for expressing positional errcor in-
clude (1) the linear, circular, and spherical standard errors represent-
ing 68.27%, 39.35%, and 19.9% probabilities, respectively, (2) the
linear probable error, cirecular probable error, and spherical probable
error representing 50% probability in each distribution, (3) the map

accuracy standard, circular map accuracy standard, and spherical accuracy
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standard representing a 90% probability level, and (4) a probability
level anproaching near-certainty for each distribution which the
positional error is theoretically unlikely to exceed; (a) three
sigma (linear, 99.73%), (v) three-Tive sigma (circular, 99.78%),

and (c) four sigma (spherical, 99.89%). Since error values are
easily converted irom one precision index to another in the same
distribution, the use of any index is largely a matter of choice.
Howvever, in presenting positional information, the positional error
is best expressed by either the S0P or 0% probability precisicn

index or hoth.



h.3. Summary of Formulas and Conversion Factors.

Linear Error rFormulas

Percentage
Precision Index Symbol [Probability Formula
Standard Error ol 68.27% 2 -
b (Xi - X) T X
g = =
X n-1 n-1
where; Xi = g measured value of the
gquantity X; Xl’ XQ can Xn
X = the most probable value
(arithmetic mean) of X
T - hX Xi
n
x = the error; x = Xi - X
n = number of measurements
Probable Error FE 50% PE = 0.6745 oy
Map Accuracy MAS 90% MAS = 1.6449 ¢
X
Standard
Near-Certainty 3¢ 9S.73% 3.0000 o,
Error (Three sigma]

Linear EBrror Conversion Factors

To
From 50% 68.27% 90% 99.73%
50% 1.0000 1.4826 2.4387 L, 475
68.27 0.6745 1.0000 1.6449 3.0000
00 0.h101 0.6080 1.0000 11,8239
99.73 0.2248 0.3333 0.5483 1.0000

15ubscript5 denote the standard error computed from a sample (ax, Oy’ gz).
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Circular Error Formulas

Percentage
Precision Index Symbol| Probability Formula
Circular a - 39.35% g = 0.
Standard Error ¢ c 5000 (oy + o) ,
when Umin/cma.x > 0.2
Circular CPE, 50% CPE = 1.1774 ¢
Probable Error CEP ¢
CPE = 0.5887 (oy + oy)
whet opiy/opay > 0.2
CPE ~ (0.21h1 Opin * 0.6621 Ipax)
2
when 0.1 < g, /o .. < 0.2
PE ~ (G.0%900 .
C (0.09 Opin * 0-67THS o)
when 0.0 < Gmin’/cmax < O.:{.!
Circular Map CMAS 90% CMAS = 2.1460 g,
Accuracy Standard
CMAS = 1.0730 (gX + oy)
when Tpmin/ Omax > 0.2
Circular Near- 3.50, 99.78% 3.5000 ¢
Certainty Error ¢
(Phree-five sigma)
Circular Error Conversion Factors
To
From 39.35% 50% 63% 90% 99.768%
39.35% 1.0000 1.1774 1.h1kp 2.1460 3.5000
50 0.8493 1.0000 1.,2011 1.8227 2.9726
63 0.7071 0.8325 1.0000 1.5174 2.47hg
90 0. 4660 0.5486 0.6590 1.0000 1.6309
96.78 0.2857 0.3364 0. Lholo 0.6131 1.0000
! Where Omin is the minimum or smaller linear standard error of the two.

®A circular error concept is not recommended for opin/omsx ratiocs less
than 0.2. However, a near-linear 50% probability error may be computed
to represent a CPE for lower ratios when a compariscn of circular errors
derived from different sources is required.




Spherical Error Formulas

Percentage
Precision Index Symbol] Probability Formule
zfﬁggglError GS 19‘9% Us = 0'3333(UX * Uy * UZ)
when op ./ Opay 2 0.35"
Spherical SPE 50% SPE = 1.5382 og
Probahle Frror
SPE = 0.5127 (o + oy + o)
when ¢ . /o > 0.35
Spherical SAS 90% SAS = 2.5003 og4
Accuracy Standard
SAS = 0.8333 (o, + oy + o,)
when ¢ . /o > 0.35
min max —
Spherical Near- |4 og 99.69% 4.0000 og
Certainty Error
(Four sigma)

Spherical Error Conversion Factors

To
From 19.9% 50% 61% 90% 59.89%
19.9% 1.000 1.538 1.732 2.500 4.000
50 0.650 1.000 1.196 1.625 2.600
61 0.577 0.888 1.000 1443 2.309
90 0.k0o0o 0.615 0.693 1.000 1.600
99.89 0.250 0.385 0.433 0.625 1.000

'A spherical concept is not recommended when g
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Appendix A
PERCENTACE PROBABTLITY ¥COR
STANDARD ERROR INCREMENTS!

The following table presents the increments of linear (cx),
circular (Uc), and spherical (Us) standard errors for intervals of
one percent probability. Percentage levels corresponding to pre-
cision indexes are underlined.

Factors for converting the error at one percentage probablility
to mnolher within the same distribution are derived by dividing the
standard error increment of the new percentage probability by the
standard error increment of the given percentage probability. An
example ie the conversion from the circular map accuracy standard

(90%) to the circulsr probable error (50%):

CPE = 1.177% o,

CMAS = 2.1460 O
1.177h

CPE = —— (MAS
2.1460

. CPE = 0.5kB6 cMAS

% 0, g, 0
00 0.0000 0.0000 0.0000
cl1 0.0125 ©. 1418 0.3389
02 0.0251 C.2010 0.4259

1 Reference 27. A-1



% Oy Ca O0g
03 0.0376 0.24685 0.4951
ol 0.0502 0.2857 0.5479
05 0.0627 0.3203 0.5932
a6 0.0753 0.3518 0.6334
o7 0.0878 0. 36810 0,6699
08 0. 100k 0. 4084 0.7035
09 0,1130 0.4343 0.734%0
10 0.1257 0.4590 0,764k
11 0.1383 0. 4828 0.792k
12 0.1510 0.5056 0.8192
13 0.1637 0.5278 0.8Lk47
14 0.1764 0.5hk02 0.869k
15 0.1891 0.5701 0.8932
16 0.2019 0.5905 0.9162
17 0.2147 0.6105 0.9386
18 0.2275 0.6300 0.9605%
19 0.240k4 0.6492 0.9818
19.9 1.0000
20 0.2533 0.6680 T1.0026
21 0.2663 0.6866 1.0230
22 0.2793 0.70kg 1.0430
23 0.2924 0.7230 1.0627
24 0. 3055 0. 7409 1.0821
25 0.3186 0.7585 1.1012
26 0.3319 0.7760 1.1200
27 0.3451 0.7934 1.1386
28 0.3585 0.8106 1.1570
29 0.3719 0.8276 1.1751
30 0.3853 0.8Lk6 1.19032
31 0.3989 0.8615 1.2110
32 0. 4125 0.8783 1.2288
33 0. U261 0.8950 1.246k
34 0.4399 0.9116 1.2638
35 0.4538 0.9282 1.2812
36 0.4677 0.9448 1.2985
37 0.4817 0.9613 1.3158
38 0.%959 0.9778 1.3330
39 0.5101 0.9943 1.3501
39.35 1.0000

0.52kk4 “1.0108 1.3672
L 0.5388 1.0273 1.3842
Lo 0.5534 1.0438 1.%013
L3 0.5631 1.0603 1.4183
Lk 0.5828 1.0769 1.k35%
hs 0.5978 1.0935 1. 4524
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% g, o o,
LG 0.6128 1.1101 1.4695
L7 0.6280 1.1268 1.4866
L3 0.6433 1.1436 1.5037
g 0.6588 1.1605 1.5200
50 0.6745 1.3774 1.5382
51 0.6303 T.I95L 1.5555
52 0.7063 1.2116 1.5729
53 0.7225 1.2288 1.590k
54 0.7388 1.2462 1.6080
55 0.755% 1.2637 1.6257
56 0.7722 1.281k 1.6436
57 0,7892 1.2992 1.6616
57.51 0.7979
5 BTS%EE 1.3172 1.6797
59 0.8239 1.3354 1.6980
60 0.8416 1.3537 1.7164
60,82 1./321
61 0.8596 1.3723 1.7351
62 0.8779 1.3911 1.7540
63 0.8965 1.%101 1.7730
63.21 1.4142

0.9154 1. T894 1.7924
65 0.93%6 1.4k90 1.8119
66 0.9542 1.4689 1.8318
67 0.97%1 1.4891 1.8519
63 0.99k45 1.5006 1.8724
68.27 1.0000
69 1.0152 1.5305 1.8932
70 1.036h4 1.5518 1.91k44
71 1.0581 1.5735 1.9360
72 1.0803 1.5956 1.9580
73 1.1031 1.6182 1.9804
T4 1.126L 1.641k 2.003k
75 1.1503 1.6651 2.0269
76 1.1750 1.6894 2.,0510
77 1.2004 1. 7145 2.,0757
78 1.2265 1.7h02 2.1012
79 1.2536 1.7667 2.1274
80 1.2816 1.7541 2,154k
81 1.3106 1.8225 2.1825
82 1.34%08 1.8519 2.211h
83 1.3722 1.8825 2.2416
8k 1.4051 1.91k5 2.2730
85 1.4395 1.9479 2.3059
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1.4758
1.5141
1.5548
1.5682
1.64k4g
1.655%
1.7507
1.8119
1.8808
1.9600
2.0537
2,1101
2,3263
2.5758
3.0000

3.2905
3.8905

WM NN NN
L T [ . . -
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Appendix B

THE MOST PROBABLE VALUE

Since the true value of & measured quentity is never known, the

most probable value of the quantity must be determined from the

observed values. The following proof (ref. no. 5) will show that the
arithmetic mean of the observed values is the most probable value of

the gquantity:

ﬁxgbols:
X = an unknown quantity
Xi = +the observed values of the unknown quantity;
X, = Xpb X, Xy .00 Xy (1)
X = the arithmetic mean of the observed values;
_ n X _ n
X = L ,o0ornX = in (2)
i=1 B i=1
xi = the error in an observation;
x; = Xy - X (3)
Proof:

2 2
xn = Xn - X
T n _
Zx.a Xy - nX
1 A
i=l i=1



From equation (2);

n I Tl
5 = Y X- ) X o= o (1)
i=1 i=1 i=1

This shows that the sum of the differences about the mean is zero,

which was expected, but if equation (3) is squared and then summed:

2 2 _
x% = X~ -2 X+ % (5)
2 2 = =D
X, X2 - 2X2 X+ X
2 2 T 5 Yo
x,” = X, - ?X, X + X
Il Il Il
¥ xie = xig-ai'{ > Xy o+ X (6)
j=1 i=1 i=]1
Il
The most probable velue will be found when E: xig = O,or the
i=1
_ Il
nmoct probzble wvalue of X will be that which msakes z: xi2 = o minimum.
i=1

In order to find this minimum, differentiate equation (6) with respect

to X and equate to O:

n n
d o _
— Z X. = . 2 Z Xi +2nX = 0
ax +
i=1 i=1
. _ n X.
X =y A (7
j=1p B

Equation (7) proves that the mean value X is the most probable
value of a sel of independent cbservatioms. Therefore, in the determi-
nation of the residual value it is correct to use the mean value for

an spproximetion of the true wvalue.
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Appendix C

PROPAGATION OF ERRCRS

A quantity fi is computed from two measured quantities a and b,
where f(a,b} denotes a function of a and b. The error Af of f1 1s
affected by the errors in both a eand b: Aa and Ab. Assuming a and
b are independent, and the errors As, Ab are randomly distributed, the

combined error Af can be computed. (ref. nos. 5, 15)

Let:
£, 0= f (al, bl)
£, = f (ag, b2)
£, = £ (ey by (1)

The measured values of a and b may be averaged, obtaining the values

2 and b. The most probable value of f is ?, (from appendix B), where:

)
I

f (&, b)
and:

Afi = fi - f (2)
In order to find the value of Af;, take the partial derivative of fy:

ar, of,
AP, = == pa. + — Ab, (3)
1 da. 1 db L

1 i
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From Appendix B, z Af = 0
i=1

Computing the sum of the squares of equation (3):

af af. 36\ 2
(Afl)2=(—~ ey +2( )( lAaz_\.b+(—-l mal?
aa abl Bbl
Jf af of,
(Afg)2=(—~g Aa2+2(-—%)(--mm:2+(_.§) a2
da 2 Ba = oh <
2 o
2
5 of, o of,| [9Ff, 3, 2
(Afn) —| e +2{—| |—] 2a, &b, +(--—) Aby
dey, da,! 10D,/ b,
Since: 3 3 3
f f f
——--J-= = -2 = . = g constant;
Bal 582 Ban
also: a a
af f f
i = 2 2 — = a constant:
3, b, b,
n
o Bfi
Afi = ) aai + 2 ( ) ( ) Aa Ab
day
i=] i=] i=1
(%)
abi




Dividing through by n:

n
Afy Bf ) Doy éb
n Ba
i=1 1
n
2 2
?Ei) By
abi n (5)
i=m]
By definition:
n o n n
& > 2 2 2 2
nﬂcfi; noo= 0, o (6)
i=1 i=1 i=1
Since a and b are independent:
n
Ha Ab
n = 0 (7)
=1
Therefore:
2 2
df; 3ty
5. = (-——1-) o ? |35 o2 (8)
fj_ aai a bi b

Equation (8) is the general form for the propagation of independent
errors, and can be expanded to cover any number of quantities (a, b, c,
d, +...). It is imperative that each element represent the same preci-

sion index in the eguation.
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Special Rules for Error Propagation

Rule 1. Sum and Difference: f=(a+b+ ...Jorf={a-b- ...)

of of

FY b

= 1 (9)

Placing (9) in the general equation (8):

= Nfoag + ch o (10)

9
The gbsolute standard error of a guantity computed from the sum or
difference of measurcd quantities ic equal to the square root of the

sum of the sguared standard errors of the measured guantities.

This is the form most frequently encountered.

Rule 2. Product of Factors Raised To Variocus Powers: f = a™ pd

af m=1 q Bf‘ m q-1

S, - me b* and 5 - a qb (11)
placing (11) into equatlon (8):

o -\/ - a2m_2 'b2q o 2 + a2m q2 ‘bzq'2 e’ 2 {12)

f a b
Dividing through by f =\/agm qu:

o, _\/mz 2m-2 \2q 0,2 a2 o2 202 o 2

-~ . +

£ a2m b2q aEm b2q

g gy 2 o, 2
Lo/ (‘3) + qf (—*) (13)
f a b

-k



Rule 3. Simple Preduct or Queotient: From the preceeding rule,

m_4q

f = a b, letm = 1, q = % 1,
Then, f = ab, or £ = a/b.
From Equation (13):
2 2
o o o
% (_E L%
£ a b

where cf/f is the fractional standard error.
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Appendix D

DERIVATION AND SOLUTION OF THE TWO-DIMENSIONAL
PROBABILITY DISTRIBUTION FUNCTION

1. Derivation. (ref. no. 24) The probability density functions of

the independent errors "x" and "y" are:

2 2
x y
1 - QUxE 1 - QUyz
p(x) = —=e , end p (y) = —=e
g 2n 0. N2x
x Y
Using Rule &4, Section 1.3.:
1 x2
- = =+
2 \o,° 0,2
p (x,y) = ' e
2n 0y Oy
1 x2 y2
S lse o2
2 (o] a
1
P(x,y) = —— e * Y axay (1)
2n I cry
X ¥
Using polar coordinates:
x2 = r2 cos2 o
y2 = 12 sin2 e
where r is tne radisl error and r = NxP + y2

P ( r o= NX°+y©e = R] = P (xy < R) (2)

where R is the radins of the probability circle.

P (r)
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The two-dimensional probability distribution function is:

Boo2n 2 [sina o cos? é]
- 5 + 5
1
P(R) = ———— e %y % “rar ae
en oy oy
r=0 =0
dr
r A Y r 46 dr (small increment resulting

from dx and 4y)

Uslng ldentlitles: sin § = % (1 - cos 28)

cos® O = % {1 + cos 20)

R an re 1 - cos 2C 1 + cos 29]

- — +
1 4 [ oyg 0y°
P(R) = ~—— e r dr 4@
ex g, dy

r=0 =0

Rearranging terms:

T
R o - 2
P [ 12 . 12] 2 1% [_ié__l.z_ 020
I g o. 4 o o
P(R) - _._;.__._ ro ¥y X 4 / e X ¥
2x Oy ay
r=0 a=0

let ¢ = 20,

a = 240:



Then:

P(R) = re 4 e ag
2n Oy cy > ar
=0 ¢==O
Rearranging terms: o 5 -
2 o] B I‘E a.
B .= s |1+ —XE T~ - 5 —QE -ljcos ¢
1 hcy Oy 1 hcy Oy
P(R) = — re x1l € ag| ar
b S
=0 0O
|+ i

lLet: r- 5 -
2B N )
r ¥
n - A
o 1| cos ¢ 5 5
..J: e J x d¢ = T - ( - 1
n o bg 2 2
X
5 ¥
where I, is & Bessel Function, zero order, modified first kind.
Therefore:
R 2
r2 0v
- 5 1+ 5 5
1 hay Ox r 5,2
P(R) = —— [ re 15 5 "Le - 1) ar (3)
Ux Uy J-I-c:y crx
r=0

2. Special Case of Two-Dimensional Probability Distribution Function.

When o, = 0, = O (ref. nos. 18, 24), from equation {3):



R I
1 20r2 2 0r2
XR) = —3 re I, |55 |—s-1jter
o, A ko, op
2
R _ I
1 2°r2
P(R) = —5 re I, (o) ar
UI‘
0
IO(O) = 1
R _ r2
T eorg
P(R) = —5 € dr
o
0 T
Since:
r2 _ 1‘2
a 2cr2 r 20r2
_ e = .
2
dr cr
Then: 5
r2 T
- 5 -
r 20? 201‘2
‘“E e dr = -« e
o-]I‘
R 2
I‘2 - R
20r2 20?
P(R) = - e 3 = l-e
R
. 20r2
..PR) = 1-e ()

3. Modified Form of the Two-Dimensional Probability Distribution

Function. (ref. no. 24%) To solve equation (3) by the use of tables,

the equation must be modified. From S.0. Rice's "Properties of Slne
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Wave Plus Noise" Bell System Technical Journal Vol. 27 No. 1, January,

1948, pp 109-157:

I (kx) = j e I, (vk) av
0

Modifying equation (3):

2
R e - a,
- 2
hg 2 o] 2 e o
1 re ¥ x IO r s -]) ar
o, O 2 2
o r=0 Ha Iy
Step A
Letting: o o
T oy
v = 1+ o
g 2 2
cy Oy
2
o a
av = — 1+ | ar
i 2 2
oy Ox
2
o Oy
’+0y gv = 2r 1+—5 |Jar
Oy
2
2°y .
rdr = T 7T 4 v
- 2
Y
4
1 . 5
x
Step B

D=5

2 cy2
To get the quantity N 5 (""‘2" - l) in the form of (vk):
o
X

(5)



a2

1+ aE
Step C
Getting o, and Oy in terms of a:
1 20 2 1 o 2 1 20 2
. J - n . y -2 X 'y
2 © 2 2 2 2
oy cy oy 9y Oy o, + oy Ox Ty Oy + oy
1+—
cka cxa



1 XY x 7y
2 2
Eﬂy. 1 SE_E_L__=
1 2+ o UE+UE
2 Oy Oy - y
4]
-y 1 = - o 2 o
¥
Step D
= 2
1 Ux + cy
on Ux2 + Oyg qyz 1
1 + = -
5 2 o 2 1 g 2
x X — x
5 2 —
|y 1

Combining Steps A, B, C, D and equation (3):

RE l+a2 o
b 2 L 22 Jo X2 1+a®
N hg 2 aE

P(R) = e 7 1

X
2a
P(R) = e’ I (vk) av
) o
1l + &
a
where:
RE 1+ a2
X = ; v =
hg 2 a°
¥
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p o-x -
y 2a
2 - (1)
Ux g + 1
=+ Y
y
. 2 2
[+ + Uy
2 2
e =G
B 2 - 2
Ux a
- 0’2 -
y

2 2 2
] r ,l+: ) (l—a ) av (9)
b © \ 2) 1+a°
b
(10)
r2 1+ a? 1 - 82
k =
hg 2 a2 ’ 1 + &2
¥



L. Solution of Mcdified Functiocn. (ref. nos. 12, 23) To compute the

CPE (CPE = R when P(R) = 0.5) for values of oy = J.6 ana 0y = JT,
two methods are available:
Method 1:

To determine the value for x by Rice's table of I, (vk) dv, enter
the table with values of k and the required probabllity.

P(R) = 50% probability; a = °X = 0.8165; 82 = 0.6667; k = 1-8°2 = 0.2
d.
y

l+a2
5 X
a -
P(R) = 2] e” " I, (vk) av
1 + &a
X
2
50 (1 + & Jf
'Wﬁ'w*ggg“‘)*‘ = e I, (vk) av
0
X
0.5103 = .Jr e’V 1, (vk) av
0

Enter the tables with k = 0.2 and interpolate for 0.5103 to get the

value of x.

6 o= L5117
5103
.8 = 5516

L x = 0.71732

2 o
x = 2 [l + 8 ] = 0.71732
hg 2 8.2
y




B*“l@l
g = LOTL3
¥

The radius of the 50% wrobability cirele (CPE) reculting from oy, oy is

R = 1.0713 oy

Method 2:

Using tables computed by Arthur Grad and Herbert bolomon:

Mrom eguation (2):

P(R) = P (\fxz + ye < R) = P ( x° + y2 S g2
Since x and y have unit standard errors, they can be written as:
X =0, Xand y = cy v.

Therefore:

P(R) = P Uyg y2 + cx2 x < Rg)
? o
o R
= P y2 + X x2 < = (11)
g G g 2
y v
¥Prom Grad and Sclomon Tables:
2 2 < =
4 &1 ¥y toay ¥y - t) fq +ta, = 1
a -
2 1 o <t
Pl te, 1T n, (12)
t 2 By 1 32)

Correlation between equations {11) and (12) will permit use of the

+tabled wvalues.
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Enter the tables with values of a5 85 and the required probability.

Then interpolate for values of R o[t .
a a
v 2
a
Since E}_c = \/——2, then &, = i 8y, = .6
y .
t = .6 = U559
5000
7 5080
2
'E" = 0.6846h = "RE
? . Uy
R g fo.é8leh _ o
oy 6

R = 1.068 o
v
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Appendix E

DERIVATION COF THE SPHERICAL PROBABILITY DISTRIBUTION FUNCTION

The combined probability density distridbution funection of the

independent errors x, y and z are:

) x2 i 2 ) z?
1 20,2 1 20,2 1 20,7
p(x,y,2) = ——— e ¢ r———— € * € (1)
Ux N 2n Uy N 2n ¢y N an
In the spherical case where g, = 0, = 0, & 0g:
2 v y® 4 R
- 2
1 2¢
p(x,y,2)ax dy dz = e 8 dx dy dz (2)
3 2
g (ex)

Converting to 3-dimensional coordinates:

xa = 32 cose ¥ cos2 1S

2 ’
y o= 82 cos® ¥ sin®
z.2 = 52 sin2 ¥
%2 + ye + 28 = s% cos® 3\ cos® A + s° cos® W sin® A + 8% sin® ¥

= 5° cos® ¥ (cos"2 A + sin® A+ &2 gin® vy



Let S = radius of gphere, replacing radial error s.

Ls’__c 8
N
rot§ <
]
\
Then: dS Sd¥ S cos ¥ Gh = S¢ cos ¢ ay dn ds
2

)
2
[[ [ 2 e 5 Poeosyaranas  (3)
5

S=0 A=0 ‘ﬂfﬂ - “2“ (2“)

(2) (2n) :‘ge 5  as

S 208
. P(8) ~\/_I f -—5 as (4)

E-2



Integrating by parts: 2

2o
3
Let u o= = dve -2 & ° as
Us g«
)
g2
- 2
2o
du = (—i“g 3 v =g 5
US
2
S
82 -

S
2 2 2052
\ > |]s s e s (5)
(s8; ="\[| 3 5| \-e + 5
0

In order to use approXimation formula (Mathematical Tables and Other

Alds to Computations, Vol. XI, No. 60, October 1957, pp 265, "A Formula

for the Approximation of Definite Integrals of the Normal Distribution

-t2/2
Funetion"), P(S) must be transformed to the integral of e dt.
8
letting C = FEE 4as = Og dC, where O, = constant:
=]
Cg C= -E (3'2
) o
P(8) = ~ | - Ce + e ac (&)
C=0
From above reference when X 2z SH
L -] 2 e
e at ~ (7)
- by
x + 0.8 e

E-3



"L p(s)

it



Appendix ¥

SUBSTITUTION OF TEE CIRCULAR FORM FOR ELLIPTICAL ERROR DYSTRIBUIIONS

/——_d-_\
Gmin Omin
Umax Tmex
\——/
o, O
min min _
= 0.9 = 0.8
Omax Tmax
Omin Omin
c g
mex max
Omin dmin
Omax = 0.7 Omax = 0.6



O O

\‘—_/
Omin -
2
cma.x
%min
o 0.3
mex

Omin

F.2

Q

min

max

min

max

0.4

0.2



O

1G.

11.

iz2.

13.

T4,

REFERENCES

Aervonautical Chart and Information Center Technical Report No. 95,
"Positional Error: Origin, Nature, and Influence on Weapon Deliv-
ery Accuracy', October 1960.

Aitken, A.C., Statistical Mathematics, 5th Edition. New York:
Interscience Publication, Inc., 1945.

Arley, Niels and K. Rander Buch, Introduction t¢ the Theory of
Probebility and Statistics. New York: John Wiley and Sons, Inc.,

1950.

Bartlett, Dana P., General Principles of the Method of Ieast
Squares with Application, 3rd Edition. Boston: The Author, 1915.

Beers, Yardley, Introduction to the Theory of Errors, 2nd Edition.
Reading, Mess.: Addison-Wesley Publishing Co., Inc., 1958.

Bomford, Brigadier G., Geodesy. Oxford: Clarendon Press, 1952,

Bouchard, Harry, revised by Francies H. Moffitt, Surveying., Yth
Fdition. Scranton, Pa.: International Text Book Co., 1039,
revised in 1959.

Cremer, H., Mathematical Methods of Statlstics, Stockhclm and
Princeton: Princeton University Press, 19L0.

Crum, W.L., Rudimentary Mathematics for Fconomist and Statisti-
cians, London: McGraw-Hill Book Co., 1946.

Freund, John E., Modern Elementary Statistics, Znd Printing.
New York: Prentice-Hall, Inc., 1953,

Gaida, Joseph, "Error Theory for Evaluatlon of ACIC Producls”,
unpublished document.

Grad, Arthur znd Herbert Solomon, "Distribution of Quadratic

Forms and Some Applications', The Annuals of Mathematical Statistics,

Vol. 26, pp 4ELE-L77. 1955.

Hart, Roger G., "A Formula for the Approximation of Definite
Integrals of the Normal Distribution Function", Mathematical
Takles and Other Aide to Computation, Vol. XI, No. 60, p. 265.
October 1G57.

Fosmer, George I., Geodesy, 2nd Fdition. New York: John Wiley
and Sons, Tnc., 1948,



15.

16.

i7.

18.

19,

20.

21.

22.

23.

2k,

25.

26,

27.

28

29,

Jordan, W. and 0. Bggert, Handbuch der Vermessungkunde, Vol. 1,
Chap. 1 and 5. Stuttgart, 1942.

Kigsam, Phillip, Surveying for Civil Fngineers. New York:
MeGraw-Hill, 1856,

Ievey, Hyman and E.E. Preidel, Elementary Statistics. New York:
Ronald Press Co., 1945.

Tevine, Daniel, Radargrammetry. New York: McGraw-H111, 1960.

Iyon, Duane, Basic Metrical Photogrammetry, Revised. 3t. Louils:
John S, Swift Co., 1960.

Merrill, Grayson, editor, Principles of Guided Missile Desgign,
"Operations Research, Armament, and Launching,"” pp. 97-111;
"Cuidence', pp. 206-301. Princeton, New Jerscy, Toronto,

New York, London: D. Van Nostrand Co., 1956.

MeGraw-Hill, Encylopedia of Science and Technology, 1060,

Rainsford, Hume F., Survey Adjustments and leagt Squares.
New York: Fredrick Ungar Publishing Ca., 1958.

Rice, 8.0., "Properties of Sine Wave Plus Noise', Bell System
Technical Journal, Vol. 27, No. 1, pp. 108-157. January 19E8.

Space Technoleogy laboratories,Inc., Bellistic Missiles, Vol. IV,
Revision 1. ILos Angeles 45, California, 1960.

Stearn, Joseph L., "Some Fundesmentals of Error Theory", The
Journal U.S. Coast and Geodetic Survey, No. 5, pp. 79-8%.
June 1i453.

U.S5. Army Field Manual 101-131, "Probability Considerations’,
Chap. T.

U, S, Army Ordnence Missile Cormand, "Geodetic Requirements for
Inertially CGuided Army Bollistic Miceile Sycteme {U)", October

1960 {Classified).

Walker, Helen M., Flementary Statiastical Methods. Henry Holt.

Worthington, Archie G., Treatment of Ixnperimentel Data. Uew York:
Jonn Wiley and Sons, Inec,, 1959,




	Cover Page
	Table of Contents
	List of Illustrations
	List of Tables

	Preface
	Abstract
	1.  One-Dimensional (Linear Errors)
	2.  Two-Dimensional (Elliptical, Circlular Errors
	3.  Three-Dimensional (Eppipsoidal, Spherical) Errors
	4.  Application of Error Theory to Positional Information
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	Appendix E.
	Appendix F.
	References

