geodesy.noaa.gov

OPUS Developments at NGS

Dan Gillins, Ph.D., P.L.S. OPUS IPT Team Lead, National Geodetic Survey February 8, 2022 Daniel.Gillins@noaa.gov

geodesy.noaa.gov

Outline

- Brief Overview on the variants of OPUS
 Summary of recent developments

 OPUS-Projects 4 & 5

 Summary of ongoing developments

 M-PAGES
- 4. Summary of future developments– OPUS 6

geodesy.noaa.gov

Online Positioning User Service (OPUS)

OPUS-Static – (2001)

- L1/L2 observables
- Single occupation on a mark, ≥ 2 hours
- GPS-only (currently true for all versions of OPUS)
- Possible to "share" your solution if T > 4 hours

OPUS-Rapid Static – (2007)

- Single occupation on a mark, 15 min < T < 2 hours
- L1/L2 observables and C1 or P1 and P2

OPUS-Projects – (~2012)

- Multiple occupations on numerous marks
- Survey network least squares adjustments
- Static GPS survey campaigns 1/9/2024

Summary of Recent Developments

- July 2021 released OPUS-Projects 4
 - Streamlines process for publishing campaign-style GPS surveys on Datasheets
 - Prepares all required FGCS Blue Booking files
 - Enables submission of GPS survey projects to NGS for review and loading in the Integrated Database

• September 2021 – released Beta OPUS-Projects 5

- Allows upload of processed GNSS vectors in the GVX format
 - RTK/RTN; rapid static; post-processed kinematic
- Enables methods for collecting and publishing RTK GPS surveys on Datasheets

geodesy.noaa.gov

OPUS-Projects 4

https://geodesy.noaa.gov/OPUS-Projects/OpusProjects.shtml

- Allows upload of photos, description files, logs, and reports
- Prepares files for publication (Blue Booking)
- Ability to run ADJUST within OPUS-Projects
- Button to submit survey to NGS for review and loading in NGS Integrated Database
- Detailed User Guide available

MARKS	ł		
	network final	network final-horizontal-free	k tal-free MARKS
bld3	0	0	bld3
bred	0	0	bred
wthr	0	0	wthr

BETA OPUS-Projects 5

- Inclusion of previously processed GNSS vectors
 - Single-base RTK vectors
 - Network RTK vectors
 - Vectors processed in other software
- Automatically "weights" uploaded vectors in a network least squares adjustment
- Final adjustment results can be submitted to NGS for publication
- Feedback welcome! Available on BETA at: <u>https://beta.ngs.noaa.gov/OP-bluebook/OpusProjects.shtml</u>

<u>**G**NSS</u> <u>Vector</u> E<u>X</u>change Format (GVX)

Website: https://www.ngs.noaa.gov/data/formats/GVX/index.shtml

- Detailed documentation
- Schema (XSD)
- Example vector file

GVX is written in Extensible Markup Language (XML)

- Designed to store and carry data in plain text format
- Flexible representation of arbitrary data structures
- Extensible new elements can be added later without breaking applications
- Both machine-readable and human-readable
- Schemas can be used to define "must haves" and "should haves"

1/9/2024

geodesy.noaa.gov

STONEX

Industry Invited to Provide Feedback

- Released GVX v. 1.0 released to industry on February 4, 2021
- Over 30 people attended mtg

Geosystems

ΤΟΡΟΟΛ

1/9/2024

septentrio

JAVAD & Carlson BREAK NEW GROUND

Trimble

geodesy.noaa.gov

Step 1: Upload Static GNSS Data Collected at Base Stations; Post-process with CORSs

geodesy.noaa.gov

Step 2: Upload GVX Files (Vectors)

	120
Add Project Tracking Number	NONE 1
Show File	Ê
Send Email	
Upload Serfil	stbi
Upload Description	1
Upload Field Logs	
Refresh PID Information	ĺ
Upload GNSS Vectors	4
Set up Adjustment	•
Upload Project Report	1
Review and Submit to IDB	

Delet

? 0

Upload GNSS Vector (.gvx) File

GNSS Vector Exchange Format (GVX) is designed by NOAA/NGS, aiming to provide a standard format for exchanging GNSS vectors derived from varying GNSS survey methods and manufacturer hardware. Each GVX file contains neccessary data of a GNSS vector for inclusion in a survey network for least square adjustment, as well as metadata which describes the vector.

For more information about .GVX format, please visit: NOAA/NGS's GVX: The GNSS Vector Exchange File Format.

			() Transporter	ONICO
			Name	GNSS vectors
1/			052.jxl.gvx	18
			053.jxl.gvx	15
3			054.jxl.gvx	13
		GNSS	057.jxl.gvx	15
1	Name	vectors	058.jxl.gvx	18
058.jxl_dtg.gvx - 58.73 KB Found in project Remove	058.jxl_dtg.gvx - 58.73 KB Found in	18	058.jxl_dtg.gvx	18
	10	059.jxl.gvx	18	
			060.jxl.gvx	18
			064.jxl.gvx	9
ricor			065.jxl.gvx	17

Step 2: Upload GVX Fi

Baselines

bell-imt2

bell-baco

6

13

6

13

GVX Baseline Statistics

1.32

1.26

1.66

2.12

vector count vector used Span Min (s) Span Max (s) PDOP Min PDOP Max

319

362

301

301

Summary of Ongoing Developments

- M-PAGES: New GNSS baseline processing engine
 - Processes all viable GNSS signals (GPS, GLONASS, Galileo, Beidou, QZS, IRN)
 - No dependence on external programs (teqc, gfzrnx, clockprep)
 - Modern programming language (Python)
 - Extensive documentation in HTML
- Goals for OPUS
 - Integrate M-PAGES in OPUS-S by September 2022
 - Integrate M-PAGES in OPUS-Projects 5 by December 2022

geodesy.noaa.gov

OPUS with M-PAGES

• Uses more satellites for processing

- More accurate
- Faster integer fixing

Upload your data file.

Solve your GNSS position & tie it to the National Spatial Reference System. What is OPUS? FAQs

Choose File No file chosen * data file of dual-frequency GNSS observations. sample

NONE

antenna - choosing wrong may degrade your accuracy.

2.002 meters above your mark. antenna height of your antenna's reference point.

daniel.gillins@noaa.gov
* email address - your solution will be sent here. Privacy Act Statement

Options to customize your solution.

formats	standard 🗸	formats explained
base stations	Use: Exclude:	identify any CORS you wish to explicitly 'Use' or 'Exclude' from your solution by typing in 4-char site IDs separated with line break sample find site IDs
state plane	let OPUS choose	✓ your SPCS zone
constellations	🖉 gps 🗌 glo 🗍 gal 🗌 b	DS 🗖 QZS 🗍 SBA 🗍 IRN

sample solutions

geodesy.noaa.gov

Summary of Future Developments

• OPUS 6

- Provides solutions in the modernized NSRS
- Develops files for submission to the new NSRS Database
- Supports classical (angles/distances), leveling, and relative gravity surveys in addition to GNSS

Concluding Remarks

- Developments to OPUS provide easier access to the NSRS
- Geodetic data can be readily submitted to NGS for publication and development of models
 - Collection of RTK data is particularly highly efficient
 - Published data can be used to support the GPSonBM campaign

geodesy.noaa.gov

Questions?

• Daniel.Gillins@noaa.gov

geodesy.noaa.gov

Extra slides...

geodesy.noaa.gov

On Other Standard File Formats

Measurement Type	File Format	File Type	Current Status	Use at NGS
Reduced GNSS data (GNSS vector)	GVX	XML	Released final version 1.0 on 2/04/2021	OPUS-Projects v.5, OPUS v.6
Differential leveling (height differences)	LVX	XML	Under development. Version 0.3 under review	OPUS v.6
Classical (angles, distances)	CVX	XML	Under development. Version 0.3 under review	OPUS v.6
Relative gravity (gravity differences)	RGX	XML	Planned for 2021	OPUS v.6

OPUS-Projects v.5.0

Basic Steps

- 1. Upload static GNSS data (if any) for post-processing
- 2. Upload GVX file(s)
- 3. [optional] Upload description files from Windesc
- 4. Process static GNSS sessions and QA/QC results
- 5. Evaluate uploaded vectors; remove "poor" vectors from network
- 6. Run all network adjustments → MUST use ADJUST in order to adjust GVX vectors
- 7. Although currently not activated, will be able to submit results to NGS for review and publication

For More Technical Details, Refer to...

- Gillins, D.T., Kerr, D., and Weaver, B. (2019). "Evaluation of the Online Positioning User Service for Processing Static GPS Surveys: OPUS-Projects, OPUS-S, OPUS-Net, and OPUS-RS," *J. Surv. Eng.* (ASCE), 145(3):05019002.
- Gillins, D.T., Heck, J., Scott, G., Jordan, K., and Hippenstiel, R. (2019). "Accuracy of GNSS Observations from Three Real-time Networks in Maryland, USA," *Proc. 2019 FIG Working Week, Hanoi, Vietnam*, April 2019, 15 pp.
- Park, J., Kim, S., Shahbazi, A., Gillins, D., and Dennis, M. (2018). "Evaluation of Static GPS Surveying Campaigns Processed in OPUS-Projects," *Final Technical Report FY17 NA293P*, National Geodetic Survey, 58 pp.
- Jamieson, M., and Gillins, D.T. (2018). "Comparative Analysis of Online Static GNSS Post-Processing Services." *J. Surv. Eng.* (ASCE), 144(4):05018002.
- Allahyari, M., Olsen, M., Gillins, D.T., and Dennis, M. (2018). "A Tale of Two RTNs: Rigorous Evaluation of GNSS Survey Observations in Real-time Networks," J. Surv. Eng. (ASCE), 144(2):05018001.
- Weaver, B., Gillins, D.T., and Dennis, M. (2018). "Hybrid Survey Networks: Combining Real-time and Static GNSS Observations for Optimizing Height Modernization," *J. Surv. Eng.* (ASCE), <u>10.1061/(ASCE)SU.1943-5428.0000244</u>, 144(1):05017006.
- Gillins, D., and Eddy, M. (2017). "Comparison of GPS Height Modernization Surveys using OPUS-Projects and Following NGS-58 Guidelines," J. Surv. Eng. (ASCE)., 143(1):05016007.

geodesy.noaa.gov

Summary on Vertical* Accuracy of OPUS-Projects

Vertical Standard		Total Time on Mark (h)	Recommended Number and Session Duration	
cm	ft			
3.0	0.10	4	(2) 2-h	
2.5	0.08	8	(2) 4-h	
2.0	0.07	22	(3) 8-h	
1.7	0.06	48	(2) 24-h	

* = ellipsoid height

geodesy.noaa.gov

Empirical Evaluation of the Accuracy of RTNs

