June 26, 2014

Steering Committee Meeting

Open Water Data Initiative

Kevin T. Gallagher
USGS, Associate Director, Core Science Systems
Open Water Data Ad Hoc Working Group

- **Anne Castle**, Department of Interior, Assistant Secretary for Water and Science
- **Lori Caramanian**, Department of the Interior, Deputy Assistant Secretary for Water and Science
- **Jerry Johnston**, Department of the Interior, Geospatial Information Officer, Managing Partner representative for the Geospatial Platform
- **Bill Werkheiser**, USGS, Associate Director for Water
- **Jerad Bales**, USGS Chief of Research and Science for Water and representative to IWRSS
- **Nate Booth**, USGS, Chief - Office of Water Information
- **Don Cline**, NOAA, National Weather Service, Chief-Hydrology Laboratory, NWS representative to IWRSS
- **James Dalton**, US Army Corps of Engineers, Chief of Engineering and Construction, USACE representative to IWRSS
- **David Maidment**, University of Texas, Professor of Civil Engineering
- **Kevin T. Gallagher**, USGS, Associate Director for Core Science Systems
- **Ivan DeLoatch**, USGS, Executive Director, FGDC Secretariat
Quantifying the availability, use, and risks to our national water resources is an issue of national importance for the present and the foreseeable future.

Improving access to data and enabling open exchange of water information is foundational to identifying and understanding existing water resources issues - particularly in the face of climate change and unprecedented drought.
Background & Motivation

There have been numerous studies, reports, and publications indicating fragmentation of water information.

"Foundational to [meeting the global water challenge] is the need to **improve access to and exchange of water data and information**, including better modeling of the hydrologic cycle, to include the impact of human-use decisions.” – John Holdren
White House Climate Data Initiative (March 2014)

• Assembly and exposure of federal government information to communities and private sector

• Engagement to develop new applications for citizens, and industry
Frame a **Possibility**

Capture your **Imagination**

Inspire you to **Action**
Major Transitions in Geospatial Info

- **Paper maps to digital data**
 - National Spatial Data Infrastructure development
 - Started in 1990’s
 - Took more than a decade to complete

- **Digital data to web services**
 - Started several years ago
 - Will take years to complete

Courtesy David Maidment, University of Texas
Major Transitions in Geospatial Info

- **Paper maps to digital data**
 - National Spatial Data Infrastructure development
 - Started in 1990’s
 - Took more than a decade to complete

- **Digital data to web services**
 - Started several years ago
 - Will take years to complete

Maps → Data → Services → Open Water Web
Major Transitions in Geospatial Info

- **Paper maps to digital data**
 - National Spatial Data Infrastructure development
 - Started in 1990’s
 - Took more than a decade to complete

- **Digital data to web services**
 - Started several years ago
 - Will take years to complete

What would that look like?
Open Water Data Vision

- Foundational **National** Data Sets with **Data Services** to support a wide variety of water user applications
- Water data **metadata, web services** and a **community** accessible on the Federal Geospatial Platform
- Access to integrated **real-time monitoring data**
- Data Assimilation for a **National Modeling** capability
- Water Maps and other **Derivative Products** that integrate geospatial & water observations
 - Such as: current conditions, precipitation estimates, reservoir storage
- **Marketplace of open source applications** (models, data visualizations, etc.) built upon **Open Water Web Services**
National Spatial Data Infrastructure

Desired Future State of NSDI

• Create network of resources and services
• Facilitate discovery, access and application of resources
• Leverage shared standard-based services
• Develop core set of information layers that interface with nonspatial data
• Use real-time data feeds and sensor webs
National Spatial Data Infrastructure

Desired Future State of NSDI

Can this vision be realized for water data?

- Use real-time data feeds and sensor webs
- Nonspatial data
Map of real-time streamflow compared to historical streamflow for the day of the year (United States)

Wednesday, June 25, 2014 14:30ET

Choose a data retrieval option and select a location on the map
- List of all stations in state,
- State map, or
- Nearest stations

<table>
<thead>
<tr>
<th>Explanation - Percentile classes</th>
<th>10</th>
<th>25-75</th>
<th>76-90</th>
<th>>90</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Much below normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Much below normal</td>
</tr>
<tr>
<td>Below normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Below normal</td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Above normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Above normal</td>
</tr>
<tr>
<td>Much above normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Much above normal</td>
</tr>
</tbody>
</table>

USGS
NWISWeb and NWIS Water Services in Millions of Successful Page Requests
Foundational Water Data Sets

- Streamflow
- Groundwater levels
- Aquifers
- Water quality
- Reservoir storage
- Elevation
- Hydrography – NHD/WBD

- Landscape Variables
- Climate/Weather/ET
- Soil moisture
- Human water use
 - Withdrawals
 - Return flows
 - Diversions
 - Losses
Building Upon Success
ACWI – Advisory Committee on Water Information

Established in 1991
Welcome to the CUAHSI Water Data Center

The WDC provides data services to the hydrologic science community and other critical-zone science communities that require access to various sources of water data to perform research on fundamental challenges in hydrology and Earth System science. We enable the water research community through supporting data access and publication, software development and curation, in addition to the development of standards.
OGC/WMO Hydrology Domain Working Group

4-Year International Effort – WaterML

November 2009

MEMORANDUM OF UNDERSTANDING BETWEEN THE WORLD METEOROLOGICAL ORGANIZATION AND THE OPEN GEOSPATIAL CONSORTIUM, INC.

2008 2009 2010 2011 2012

Hydrology Domain Working Group formed OGC observer at CHy-13

Technical Meetings Each 3 Months Four Interoperability Experiments (Surface water, groundwater, forecasting) Annual week-long workshops Involvement by many countries

Acknowledgements: OGC, WMO, GRDC, NWS, CUAHSI, BoM/CSIRO, USGS, GSC, Kisters,

A time series for one variable at one location

WaterML2
Overview: National Water Center (NWC)

- Common Operating Picture for Water Resources
- Geo-Intelligence Laboratory
- Science and software studio
- Systems proving ground
- Distance learning
Proposal

We are proposing an Open Water Data Initiative that will:

- integrate currently fragmented water information into a connected, national water data framework
- leverage existing shared infrastructure and tools to provide a platform for innovation, modeling, and data sharing and solution development.
- capitalize on cross-government interest in big data, IT innovation, Open Data, Data.gov, etc.
- Build on the ground-breaking work of the FGDC, OGC, IWRSS, CUASI, ACWI, and others.
Charge for the FGDC

In collaboration with the ACWI and other partners – Advance an Open Water Data Initiative, including:

- Reviving and populating the joint Subcommittee on Spatial Water Data to design a national open water data infrastructure;
- Supporting IWRSS consortium members in the scoping and implementation pilot activities;
- Creating an integrated water data portfolio for specific hydrologic regions or basins;
- Developing a technical reference architecture that supports the sharing of water data and links observations to geospatial data;
- Leveraging the Geospatial Platform to make water data more accessible and to support water data community collaboration;
Charge for the FGDC cont.

- Identifying how existing investments in water data sharing can be integrated and leveraged;
- Engaging the international community in standards and technology development including the Open Geospatial Consortium;
- Identifying and prioritizing improvements to relevant framework geospatial data (National Hydrographic Dataset, Watershed Boundary Dataset, National Elevation Dataset, National Geologic Map Database, and the National Cooperative Soil Survey);
- Utilizing the FGDC coordination and governance structure to support related activities in the federal water sector.
Next Steps

- Endorse revival and re-populating of Subcommittee on Spatial Water Data
- Issue charge to the subcommittee
 - Work with IWRSS consortium members to:
 - Refine charge going forward
 - Define and implement Pilot Projects
- Schedule “periodic” check-ins with the Steering Committee
Questions?

Kevin T. Gallagher
USGS, Associate Director Core Science Systems
kgallagher@ios.doi.gov