Partnerships and Progress: OGC Disasters Interoperability Initiative

Mark Reichardt
President & CEO
mreichardt@opengeospatial.org

5 September 2018
National Geospatial Advisory Committee
The OGC Mission

To advance the development and use of international standards and supporting services that promote geospatial interoperability.

Global forum for the collaboration of geospatial data / solution providers and users.

- Achieve technical agreement on interoperability challenges
- Develop, prototype, demonstrate innovative new solutions
- Networking, partnership development, corporate identity
- Insight into emerging technologies and markets
- Discover solutions being advanced by others
- Share effort / resources in solving interoperability challenges
Emergency & Disaster Management

Has been a central organizing focus for OGC since its inception in 1994
Emergency and Disaster Management Domain Working Group

- Standing OGC forum for uniting communities of users including government agencies, industry, research organizations, non-governmental organizations and others.

- Promote dialog, collaboration and innovation concerning interoperability and standards alignment within the EDM community.
OGC Web Services Testbed (2001-2002)
Rapid Interface Development

- New York City
- 17 Participating organizations (NYC, vendors, Universities, and Federal Agencies)
- Interoperability of real time sensor webs.
- Satellite and airborne imagery, orthophotos and planimetric data.
- Multiple clients interfacing to over a dozen data repositories in different locations.
- Exercised the OGC Web Services standards and candidate Sensor Web Enablement standards
Port Authority NY / NJ
IOGP and IPIECA (International Petroleum Industry Environmental Conservation Association) chose OGC to lead an open process to develop a recommended practice based on open standards.

- Produce a **Recommended Practice** for support of Oil Spill response using GIS technology:
 - Geo-information in a “Common Operating Picture” for management of the response
 - Published as OGC 15-037

Accomplished via OGC Innovation Program initiative.
Sendai / Fukushima Japan

Sendai Airport – By Roberto Devito

Haramachi, Minami-soma, Fukushima, Japan – By Jun Teramoto

© 2018 Open Geospatial Consortium
"Moving features" data describes such things as vehicles, pedestrians, airplanes and ships.
- This is Big Data – high volume, high velocity
- CSV and XML encodings of ISO 19141
Predictive Models with Simple Interfaces

OGC Web Processing Service (WPS)

Assess situation on ground
Check predictions

WFS Transaction

Social Media Analysis WPS
OGC’s Geospatial Interoperability Standards Framework

- **OGC Web Service Standards**
 - Publish, discover, access, process, and share all types of geospatial and remote sensing data

- **OGC Sensor Web Enablement and SensorThings Standards**
 - Discover, task, access and process observations from fixed & mobile sensors
 - Access and integration of Internet of Things

- **Support Analysis and Processing**
 - Environmental modeling
 - Urban models
 - Geospatial Big Data / Analytics

- **3D Visualization & Augmented Reality**
 - Outdoor location, routing
 - Indoor location

- **Social Media / Crowdsourcing**
 - Geo-enabled Social Media

Source: Thomas Kolbe, Berlin TU

OGC Augmented Reality Markup Language 2.0

© 2018 Open Geospatial Consortium
Recurring Themes in Disaster Management

• Lack of policy operationalization
 – Example: readiness to accept, qualify, ingest and use relevant geospatial information from a range of government, commercial providers and citizens via social media / VGI.

• Difficult to identify / access “fit for purpose” information in the context of a disaster event
 – Inability with existing search / metadata approaches to quickly discover and understand which information sources, analysis products are most useful

© 2018 Open Geospatial Consortium
Recurring Themes in Disaster Management

• Lack of sufficient / timely coordination in the disaster workflow to derive actionable knowledge
 – Example: rapid processing (fuse, process, synthesize) multiple data sources / real-time sensor feeds for direct use by the decision maker / responder

• Need for a persistent methodology to address the full lifecycle of a disaster
 – Example:
 • Recovery timeline months / years
 • Cross-border organization and management of disaster related EO, geospatial information, analytics, workflows, and tools necessary for collaboration.
• Objectives

• Engage stakeholders (Executive, Operational and Technical) to gather and share information on the current state for using geospatial data and services during natural disasters

• Understand what data, applications, tools and services are available and what is needed

• Determine and how discoverable, accessible and useable are the existing services

• Understand interoperability challenges and integration opportunities

• Communicate activities occurring at OGC and other key organizations

• Identify gaps in data, applications, tools and services

• Leverage follow on Pilot initiatives to address findings

OGC®
• Phase one: OGC Disasters Interoperability Concept Development Study (CDS)
 – Encourage sustained community-wide dialog to stimulate dialog on successes, issues and opportunities
 • Interviews with Stakeholders
 • Globally issued Request for Information
 • Stakeholder Workshops
 • Findings & Recommendations
 • Persistent forum
 – Assess current state of SDI components for the use of disasters.
 – Document data exchange technologies, develop an inventory of available geospatial services across different types of disasters, define the core components of a SDI architecture
 – Define use-cases and scenarios for future disaster pilot(s)
Disasters CDS Stakeholders
Sponsors & Organizations Responding to Disasters RFI

- US Geological Survey
- US Federal Geographic Data Committee
- US Department of Homeland Security
- AmericaView
- Ardent
- Canadian Armed Forces
- CIESIN, Columbia University
- Croatian Crisis Mgt Association
- CubeWerx
- DigitalGlobe
- Ecere
- Envitia
- Esri
- European Union Satellite Centre
- Fund For New York City
- GeoScience Australia
- GeoThings
- German Weather Service (DWD)
- Group on Earth Observations (GEO)
- HazardHub
- Humanitarian OpenStreetMap Team (HOT)
- Hunter College of Geography
- ImageMatters
- Land Information New Zealand
- MappingSupport
- MetSafe
- National Park Service
- New Light Technologies
- New York City
- New York Geospatial Catalysts
- Remote Sensing Solutions Inc.
- StormCenter Communications Inc.
- US Department of Agriculture, Ops Center
- Xentity Corporation

end-users, i.e. consumers of the products provided by other stakeholders

policy makers

data producers, providers, brokers, value added resellers

data processors such as GIS mapping experts

data handlers such as hardware, cloud and infrastructures providers
Disasters CDS Stakeholders (2)
Workshop Participants

- All Hazards Consortium
- Amazon Web Services
- California Governor's Office
- California State University, Monterey
- City of Virginia Beach, VA
- College of Charleston SC
- Figure Eight
- First Responder Network Authority
- Gates Foundation
- Howard County, Maryland OEM
- Merrick & Company
- NAPSG Foundation
- National Insurance Crime Bureau
- National Geospatial-Intelligence Agency (NGA)
- Northern California Regional Intelligence Center
- Office of Science & Technology Policy (OSTP)
- Planet, Inc.
- United National Office of Space Affairs

- US Department of Commerce
 - Economic Development Administration
- US Department of Energy (DOE)
- US Department of Health and Human Services (HHS)
 - Center for Disease Control
- US Department of Homeland Security (DHS)
 - FEMA
- US Department of Interior (DOI)
 - US Geological Survey
 - Federal Geographic Data Committee
- US General Services Administration (GSA)
- US National Aeronautics and Space Administration (NASA)
 - Ames Research Center
- US National Oceanic and Atmospheric Admin. (NOAA)
 - National Weather Service
- World Bank
Disasters CDS Stakeholders (3)
Additional Organizations Represented in Attendance

- Booz Allen
- Dewberry
- Direct Sensing & Analytics Association
- Dorchester County, MD
- ESIP Federation
- Future Earth
- G&H International Services
- George Mason University
- GSPH LLC / Sustaine’
- Keys Net LLC
- Lewis Burke Associates
- Marion County, FL Information Technology
- Maryland Environmental Service
- Michael Baker International
- Noblis
- One Concern
- Radiant Solutions

- Sat-Drones
- University of Maryland
- US Army Corps of Engineers
- Science & Technology Policy Institute
- Thermopylae sciences + technology
- US Department of Agriculture
 - US Forest Service
 - Agriculture Research Center
 - Foreign Agricultural Service
- US Department of Interior (DOI)
 - Bureau of Land Management
- US Department of Transportation (DOT)
 - Federal Aviation Administration
 - Maritime Administration
- US Environmental Protection Agency (EPA)
- World Resources Institute / Partnership for Resilience..
• From the RFI responses and workshops, four high level, overarching requirements of any Disasters SDI rose to the surface.

1. Provide stakeholders with appropriate access to the spatial data they need. These data can be static as well as dynamic data that arise before, during and after the disaster.

2. Allow different stakeholders at different locations to access the SDI.

3. Allow for data exchange, especially dynamic data, in an appropriate, efficient and secure way.

4. Increase the use relevant open standards / best practices to achieve the points above
Key Conclusions (continued)

- Underserviced stakeholders
 - First Responders
 - General Public

- Architecture implementation should be a loose confederation of portals and platforms discoverable by open specifications and standards.

- Architecture should allow easy integration of new and emerging technologies.

- Emphasis on new data source integration such as UAS and Crowd-sourced data.
 - What other new data and standards can be used?
 - What new tools exist or are forthcoming to integrate these new data sources?
• Better integration of near real-time observations from both satellites and in-situ sensors, along with auto-registration of sensors is required.

• Need to exercise a Disasters SDI in all phases the ‘life cycle’ of disaster management: 1) mitigation; 2) preparedness; 3) response; and 4) recovery.

• Tailoring of key geospatial information for different disaster types (hurricanes, earthquakes, floods, etc.) will provide focus and reduce info overload.

• Core / base data should be prepared and available in advance. i.e. Pre-loaded on mobile devices for first responder / field use
Phase 2: OGC Disasters Interoperability Pilot initiatives designed to:

- Illustrate the benefits of a common, interoperable Disasters SDI to support improved support to disaster lifecycle
- Highlight the SDI architecture concept, technology and its application to support disaster stakeholders.
- Leverage Concept Development Study findings to advance new capabilities, new levels of access to relevant geospatial information
- Explore approaches that allow more efficient use of disasters SDI data, processing resources.
- Analyze consistent and long term retainability practices for disasters related material.
Next Steps

• Finalize CDS Report and Findings by late September 2018

• Sustain and grow dialog with the disasters stakeholder community
 – Expand OGC Alliance Partner network
 – Work toward multi-organizational joint community steering process

• Begin planning for Pilots to address key CDS / community findings

OGC®