Delta State University CAP Category 6 Project

Talbot Brooks
Delta State University

Problem

- Training and awareness of FGDC standards needs a higher profile for implementation of key strategic initiatives such as NSDI
- Educational materials about FGDC standards are disparate and sometimes difficult to locate
- The academic community does not emphasize the importance of spatial data standards

Related Issue

- ►GIT becomes easier to use every day, but with unintended consequences
 - Quickly growing community of "lay" users unaware of standards and their importance
 - Lack of conformity in data creation and management

Solution

- Create easy to access and consistent training about FGDC standards in an online format
- Make training available for free through FGDC website and interested parties (eg., GITA)
- Each standard presented as a stand-alone module

Solution

- Individual modules may be combined to create an academic course (3-semester hours)
- Make curriculum available to higher education institutions for integration into curriculum as desired (eg, adopt individual modules or adopt them all and use them to create a course in FGDC Data Standards)

Standards To Be Covered

- ► Introductory module (Why Standards?)
- ▶ US National Grid
- Cadastral
- Orthoimagery
- Address Content Standard
- Concluding module (focus on implementation)

Work Plan

- ► Identify existing materials on FGDC website and work with Vaishal to integrate into current training section
- Update/create new materials and integrate into modular format
- Integrate into 3-semester hour course format
- Disseminate/publish

Approach

- Student-centered learning
- Specific learning outcome objectives with focus on
 - Understanding the standard
 - Implementing the standard
 - Resources and methods for being involved in the process for each standard (eg., connect with stewards)
- Assessment
 - Self-assessment for those learning on own
 - Examination material for formal programs of study

US National Grid

- Why Use USNG?
- An Overview of Projections and Coordinate Systems
- National Map Accuracy Standards
- The USNG and Fundamental Map Reading Skills
- Making USNG Maps, Part 1
- Making USNG Maps, Part 2

Cadastral

- Purpose and Benefits of the Cadastral Data Content Standard
- How the Standard Was Developed
- Other Standards and Related Activities
- Data Modeling Techniques, Rules, and Diagram Conventions
- Crosswalks, Translations, and Examples
- Understanding Compliance with the Standard
- Maintenance and Support of the Standard
- One of the optional modules

Orthoimagery

- Introduction to Orthoimagery
- Data and Orthoimagery Structures and Formats
- Data Sources
- Aerial Extent and Georeferencing
- Understanding Resolution and Accuracy
- Data Quality and the Effect of Elevation

Address Data Content

- Introduction and Understanding the Components of an Address
- Street Address Data Content, Part I
- Street Address Data Content, Part II
- Street Address Data Classification
- Relational Data Models and Street Addressing Standards
- Street Address Data Quality
- Street Address Data Transfer

Partners

- Cadastral Data Content Standard: Nancy von Meyer, Fairview Industries and US Census
- Street Address Data Standard: Hillary Perkins, URISA
- Content Standard for Digital Orthoimagery: Robin Fegeas, USGS
- Standard for a U.S. National Grid: Tom Terry, USMC and Jules McNeff, Public X/Y Project
- General subject matter experts supporting this project are Bob Samborski, Geospatial Information and Technology Association (GITA) and Jim Steil, MS Automated Resource Information System and Technical Center (MARIS)

Questions?

Talbot J. Brooks, Director
Center for Interdisciplinary Geospatial Information Technologies
Delta State University
Box 3325
Cleveland, MS 38732-3325
US National Grid 15S YT 09843639

(662) 846-4520 (w) (662) 402-3772 (c) tbrooks@deltastate.edu