FGDC-STD-014.7d-2008

Geographic Information Framework Data Content Standard

Part 7d: Transportation - Transit

May 2008

Federal Geographic Data Committee

Established by Office of Management and Budget Circular A-16, the Federal Geographic Data Committee (FGDC) promotes the coordinated development, use, sharing, and dissemination of geographic data.

The FGDC is composed of representatives from the Departments of Agriculture, Commerce, Defense, Education, Energy, Health and Human Services, Homeland Security, Housing and Urban Development, the Interior, Justice, Labor, State, and Transportation, the Treasury, and Veteran Affairs; the Environmental Protection Agency; the Federal Communications Commission; the General Services Administration; the Library of Congress; the National Aeronautics and Space Administration; the National Archives and Records Administration; the National Science Foundation; the Nuclear Regulatory Commission; the Office of Personnel Management; the Small Business Administration; the Smithsonian Institution; the Social Security Administration; the Tennessee Valley Authority; and the U.S. Agency for International Development. Additional Federal agencies participate on FGDC subcommittees and working groups. The Department of the Interior chairs the committee.

FGDC subcommittees work on issues related to data categories coordinated under the circular. Subcommittees establish and implement standards for data content, quality, and transfer; encourage the exchange of information and the transfer of data; and organize the collection of geographic data to reduce duplication of effort. Working groups are established for issues that transcend data categories.

For more information about the committee, or to be added to the committee's newsletter mailing list, please contact:

Federal Geographic Data Committee Secretariat c/o U.S. Geological Survey 590 National Center Reston, Virginia 22092 Facsimile: (703) 648-5755 Internet (electronic mail): <u>fgdc@usgs.gov</u> World Wide Web: <u>http://www.fgdc.gov</u>

_

Contents

Introduction vii								
1 Scope 1								
2 Normative references1								
 3 Maintenance authority 3.1 Level of responsibility 3.2 Contact information 	. 2							
4 Terms and definitions	2							
5 Symbols, abbreviated terms, and notations	3							
6 Transit system requirements 6.1 Introduction 6.2 The context of the transit system 6.3 TransitFeature 6.4 TransitStop 6.5 ConnectionSeg 1 1 6.6 TransitPath 1 1 6.7 TimePoint 1 1 6.8 Pattern 1 1 6.9 TransitRoute 2 1 6.10 Block 2 1 6.11 PTVehicle 2 2 6.12 TransferCluster 2 3 6.14 Facility 3 3 6.15 Amenity 3 3 6.16 Fare	. 3 . 5 . 6 10 12 15 18 21 23 26 29 31 34 37							
6.17 Trip								
7 Code lists	43 44 44 45 45 46 47							
Annex A (informative) Trip itinerary planning use case.4A.1Introduction	48 48 48 48 48 50 50							

A.5.1 A.5.2 A.5.3 A.5.4	Mapping data requirements to current transit model Guidance on how to specify a fare table using TCIP standard on fare collection ss objects (NTCIP 1408:2001) General Fare tables and fare policy type Calculating the cost based on fare media type Defining the time period table	55 55 56 58 59
A.5.5 A.5.6	Defining fare instruments Identifying exceptions	
Annex B.1 B.1.1 B.2 B.3 B.3.1 B.4	B (informative) Public transportation stop inventory sharing use case Supported operation Overview and description Enumeration of needs Functional requirements for supported operation Overview Mapping data requirements to current transit model	65 65 65 66 66
Annex C.1 C.1.1 C.1.2 C.2 C.2.1 C.3	C (informative) Unplanned re-routing use case	68 68 68 69 69
	D (informative) Address extension to the transit model E (informative) Bibliography	
Figures Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure	 5 1 - The transit system	4 5 6 10 12 15 18 21 23 26 29 31 37 39 41 67
Figure	 D.1 – Illustration of address segment information requirements D.2 – Suggested information attributes for AddressSeg and Address classes D.3 – Data model extension to support address information transmission 	73

Tables

Table 1 – Data dictionary for TransitStop	7
Table 2 – Data dictionary for ConnectionSeg	
Table 3 – Data dictionary for TransitPath	
Table 4 – Data dictionary for TimePoint	

Table 5 – Data dictionary for Pattern	
Table 6 – Data dictionary for TransitRoute	22
Table 7 – Data dictionary for Block	24
Table 8 – Data dictionary for PTVehicle	27
Table 9 – Data dictionary for TransferCluster	30
Table 10 – Data dictionary for Landmark	32
Table 11 – Data dictionary for Facility	35
Table 12 – Data dictionary for Amenity	38
Table 13 – Data dictionary for Fare	
Table 14 – Data dictionary for Trip	42
Table 15 – CodeList for AmenityType	43
Table 16 – CodeList for FacilityType	43
Table 17 – CodeList for FareType	44
Table 18 – CodeList for FarePolicyType	44
Table 19 – CodeList for ObstacleType	45
Table 20 – CodeList for PatternType	
Table 21 – CodeList for RouteDirectionType	46
Table 22 – CodeList for StatusType	46
Table 23 – Codelist for TransitServiceType	47
Table A.1 – Trip itinerary planning (TIP) functional requirements	50
Table A.2 – Trip planning data requirements	
Table A.3 – Fare definition steps	56
Table A.4 – Fare zone table (FcFareZoneTable)	
Table A.5 – Fare distance calculations matrix (FcFareDistanceTable)	
Table A.6 – Data element code values for select FcFareCharacterCost fields	59
Table A.7 – Example of a FcTimePeriod table for weekday (day type)	59
Table A.8 – TCIP definition of various fare instruments	
Table B.1 – Potential users of shared data	
Table B.2 – Detailed functional requirements	
Table C.1 – Unplanned re-routing stakeholders	
Table C.2 – Detailed functional requirements	
Table C.3 – Data requirements for rerouting use case	
Table D.1 – Data dictionary for AddressSeg and Address	75

Foreword

Geographic information, also known as geospatial information, both underlies and is the subject of much of the political, economic, environmental, and security activities of the United States. In recognition of this, the United States Office of Management and Budget issued Circular A-16 (revised 2002), which established the Federal Geographic Data Committee (FGDC) as a coordinating organization.

Work on this standard started under the Geospatial One-Stop e-Government initiative. The standard was developed with the support of the member agencies and organizations of the FGDC and aids in fulfilling a primary objective of the National Spatial Data Infrastructure (NSDI), that is, creation of common geographic base data for seven critical data themes. The seven core data themes are considered framework data of critical importance to the spatial data infrastructure.

As the Geographic Information Framework Data Content Standard was developed using public funds, the U.S. Government will be free to publish and distribute its contents to the public, as provided through the Freedom of Information Act (FOIA), Part 5 United States Code, Section 552, as amended by Public Law No. 104-231, "Electronic Freedom of Information Act Amendments of 1996".

Introduction

The primary purpose of this part of the Geographic Information Framework Data Content Standard is to support the exchange of transit transportation data. This part seeks to establish a common baseline for the semantic content of transit transportation databases for public agencies and private enterprises. It also seeks to decrease the costs and simplify the exchange of transit transportation data among local, Tribal, State, and Federal users and producers. That, in turn, discourages duplicative data collection. Benefits of adopting this part of the standard also include the long-term improvement of the geospatial transit transportation data within the community, the improved integration of safety, emergency response, and enforcement data, and streamlined maintenance procedures.

1 Scope

The Geographic Information Framework Data Content Standard, Part 7d: Transit defines components of a model for describing public transportation (transit) systems, which is one of five modes that compose the Transportation theme of the digital geospatial data framework. The primary purpose of the Transit part of the standard is to support the exchange of spatial and temporal data related to public transportation. The emphasis in developing this part has been on supporting data exchange on a regional level to support itinerary planning, infrastructure inventories, and re-routing applications. It is the intent of this part to develop a consensus around a set of common definitions for real world transportation features to advance the goals of the NSDI. It is the intent of the part to set a common baseline that will foster the widest possible set of applications of public transportation data for both user and producer. It is also intended to foster improvements in the common spatial data infrastructure through enhanced data sharing and the reduction of redundant data production.

As a transportation mode, transit differs substantially from other modes such as rail and road in that core operational features of the transit system consist of spatial and temporal elements that rest upon the transportation infrastructure. The classes, features, and characteristics included in Transit (Part 7d) were developed as part of a comprehensive review of several use cases that have been documented here. Although these use cases addressed the operational requirements of a broad selection of transit business scenarios, they did not provide sufficient input to design an all-inclusive transit model. Additional use cases will be required to identify the universe of classes, features, and characteristics necessary to fully describe transit geographic base data.

This part of the Federal Geographic Data Content Standard can be implemented using a variety of software packages and is designed to accommodate data with or without geometry. It is designed to be able to depict the complete transit system at all levels of service and all functional classes that may be defined by a data-providing agency.

This part of the standard is a companion to the Transportation Base (Part 7). It is also one of five thematic parts devoted to one of five primary modes of transportation: Air (Part 7a), Rail (Part 7b), Roads (Part 7c), Transit (Part 7d), and Inland Waterways (Part 7e). There are a number of issues common to the transportation domain that, because of their broader applications are covered in the Transportation Base (Part 7). Other issues, specific to the Transit part, are discussed in the informative annexes.

Subsequent revisions to this part of the standard may lead to a more thorough treatment of specific technical and business issues, especially as the part is implemented. The developers of the current Transit part recognize the need to extend the model being developed in the Rail (Part 7b) part for the purposes of transit modeling.

The Transit part includes a data dictionary based on the conceptual schema presented below. To conform to this part, the user shall satisfy the requirements of the data dictionary. The user's conforming dataset shall include a value for each mandatory element, and a value for each conditional element for which the condition is true. It may contain values for any optional element. The data type of each value shall be that specified for the element in the data dictionary, and the value shall lie within the specified domain. This part only specifies the special requirements of conformance for a dataset containing transportation information. Conformance to the part requires additional actions specified in the Base Document (Part 0) and the appropriate modal parts 7a, 7b, 7c, 7d, and 7e.

2 Normative references

Annex A of the Base Document (Part 0) lists normative references applicable to two or more parts of the standard, including those other than the transportation parts. No additional normative references are specified in the Transportation Base (Part 7). Informative references applicable to the Transit part only are listed in Annex E. Informative references applicable to two or more transportation parts only are listed in Annex C of the Transportation Base. Annex D of the Base

Document lists informative references applicable to two or more of the parts, including those other than the transportation parts.

3 Maintenance authority

3.1 Level of responsibility

The FGDC is the responsible organization for coordinating work on all parts of the Geographic Information Framework Data Content Standard. The United States Department of Transportation (USDOT), working with the FGDC, is the responsible organization for coordinating work on the Geographic Information Framework Data Content Standard, Part 7: Transportation Base and subparts (Parts 7a, 7b, 7c, and 7d, excluding 7e) and is directly responsible for development and maintenance of the transportation parts (excluding 7e) of the Framework Data Content Standard.

3.2 Contact information

Address questions concerning this part of the standard to:

Federal Geographic Data Committee Secretariat c/o U.S. Geological Survey 590 National Center Reston, Virginia 20192 USA

Telephone: (703) 648-5514 Facsimile: (703) 648-5755 Internet (electronic mail): <u>gdc@fgdc.gov</u> WWW Home Page: <u>http://fgdc.gov</u>

4 Terms and definitions

Definitions applicable to the Transit part are listed here. Other terms and definitions applicable to multiple transportation parts of the standard are listed in the Transportation Base (Part 7). More general terms and definitions can be found in the Base Document (Part 0) part of the standard. Users are advised to consult these documents for a complete set of definitions.

4.1

amenity

elements of a physical feature, a fixed location, or a transit facility

NOTE An amenity may be described by one or more characteristics, or attributes, such as the year of construction or its current condition.

EXAMPLE The amenities of a public transportation stop may include the shelter, platform announcement panel, and benches.

4.2

block

sequence of revenue and non-revenue trips to which a transit vehicle may be assigned

NOTE A block begins when the vehicle leaves a vehicle base and ends when it returns to a vehicle base.

4.3 facility

physical place that is used by a transit agency

EXAMPLE Transit facilities can include vehicle base, stop point, transit center, or administration building.

4.4

pattern

unique, non-branching, ordered sequence of **time points**, street links, or public transportation **stops** to be followed by a transit vehicle in scheduled service

4.5

public transportation vehicle

revenue conveyance in a transit fleet

4.6

stop

location where public transport customers may board or alight from a transit vehicle in revenue service

4.7

time point

location along a pattern where trips are assigned arrival, dwell, or departure time periods

4.8

transfer cluster

collection of one or more public transportation **stops** where transfer between **routes** is convenient

4.9

trip

one-way scheduled movement of a transit vehicle between starting and ending time points

EXAMPLE A revenue-service trip will be an instance of a pattern.

5 Symbols, abbreviated terms, and notations

The following symbols, abbreviations, and notations are applicable to the Transit part. Those common to two or more transportation parts are listed in the Transportation Base (Part 7). Symbols, abbreviations, and notations applicable to multiple parts, including the transportation parts, are listed in the Base Document (Part (0).

ADA – American Disabilities Act

CIS – Customer Information Service

ITS – Intelligent Transportation System

PTVehicle – Public Transit Vehicle

TA – Transit authority

TIP - Trip Itinerary Planning

USNG – United States National Grid

WMATA – Washington Metropolitan Area Transit Authority

6 Transit system requirements

6.1 Introduction

The transit system model describes the geographic locations, interconnectedness, and characteristics of public transportation in the larger transportation system. The transit system

includes physical and non-physical components representing primarily the bus mode of travel, though subsequent versions of this part of the standard will include rail transit (for example, subway, light rail) as well.

Transit systems include physical infrastructure components such as public transportation stops and facilities, as well as non-physical features such as routes and patterns that are used to define the movement of public transportation vehicles.

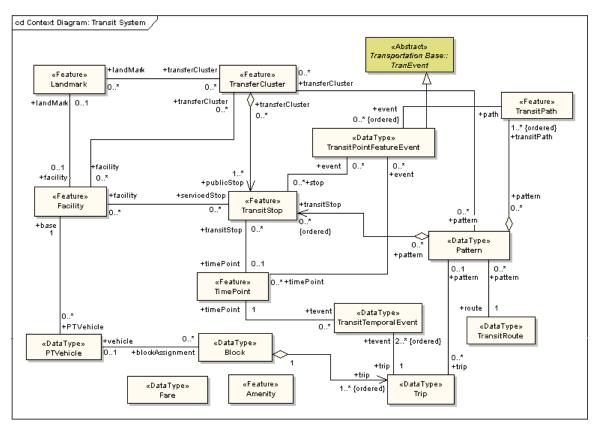


Figure 1 – The transit system

As shown in Figure 1, the framework transportation transit system has several principal features, including TransitStop, TimePoint, TransitPath, and Pattern. Transit paths are the portions of the physical transportation system (that is to say, roads) that are defined by the application domain using some business rules that may vary according to the business and technical requirements.

Other features shown include:

- TransferCluster
- Landmark
- Facility
- PTVehicle
- Amenity
- Block
- TransitRoute

- Trip
- Fare

These are discussed in subsequent sections.

6.2 The context of the transit system

This version of the Transit part is closely related to the Transportation Base (see Figure 2 in the Transportation Base). To ensure maximum utility in a variety of contexts, this transit model does not prescribe any specific business rules for the segmentation of the transportation network. The focus of this part is to define a way to encode transit features and their attributes.

6.3 TransitFeature

TransitFeatures are objects that represent real world public transport phenomena. TransitFeature is shown in Figure 2 and is a subtype of TranFeature. TimePoint, Facility, Amenity, and TransitStop are all subtypes of TransitFeature.

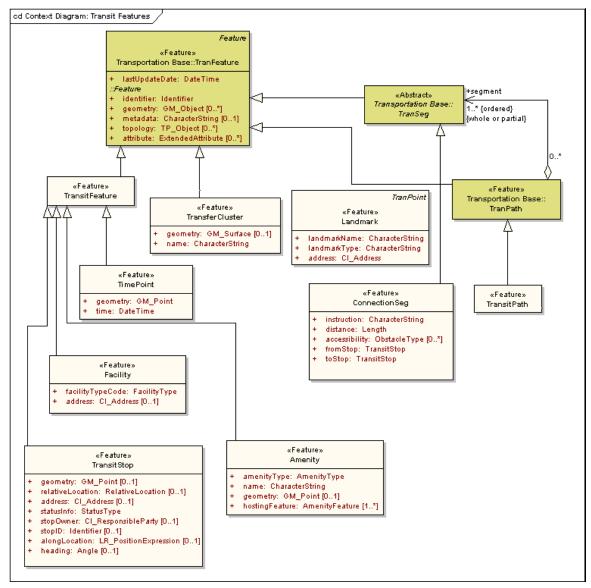


Figure 2 – TransitFeature

6.4 TransitStop

TransitStop is a central feature of the transit model because it conveys positional information that represents the key business need of providing service to travelers. For that reason, the feature is deemed essential to the exchange of transit data. The TransitStop is shown in Figure 3 as a type of TransitFeature. TransitStop has the geometry of type GM_Point as defined in ISO 19107.

TransitStop is a Facility and may optionally be represented by its geometry. The TransitStop may be contained in a cluster of stops that form a TransferCluster wherein a transit rider may change routes. A TransitStop may optionally be associated with a TimePoint. A Pattern may be represented as a series of zero or more ordered TransitStops, or a series of TransitStops may be used to define a path along a TransitPath. The TransitStop is tied to the coverage geometry as well as the linear description of its environment including relativeLocation associated with the nearest intersection, alongLocation, heading and address. Service status conditions such as statusInfo and stopOwner are key attributes to determine usage and responsibility.

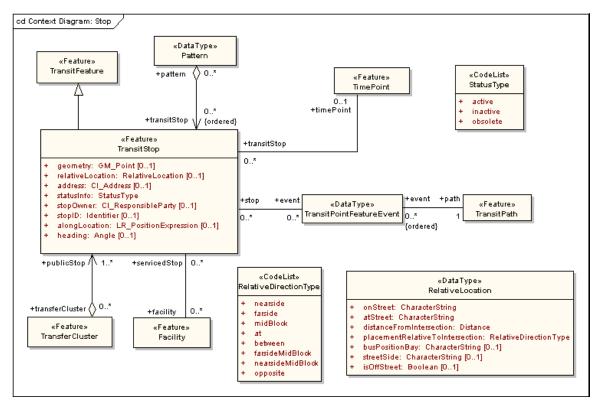


Figure 3 – TransitStop

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
1	TransitFeature				< <feature>></feature>	
2	TransitStop				< <feature>></feature>	Lines 3-15
3	geometry	Shape and geo-location of a TransitStop	0	1	< <type>> GM_Point</type>	Defined in ISO 19107
4	relativeLocation	Place near another known place	0	1	< <datatype>> RelativeLocation</datatype>	
5	address	Single combination of street name, postal community, State, and postal code	Ο	1	< <datatype>> CI_Address</datatype>	Defined in ISO 19115
6	statusInfo	Information on operational type applicable to the stop	М	1	< <codelist>> StatusType</codelist>	Unrestricted
7	stopOwner	Organization that has jurisdiction over the transit stop	0	1	< <datatype>> CI_ResponsibleParty</datatype>	Defined in ISO 19115
8	stopID	Unique identifer for a transit stop	0	1	< <datatype>> Framework::Identifier</datatype>	Unrestricted
9	alongLocation	Place next to a street or address	0	1	< <type>> LR_PositionExpression</type>	Defined in ISO 19133
10	heading	Direction of travel or orientation of a transit vehicle	0	1	Angle	
11	Role name: pattern		0	*	< <datatype>> Pattern</datatype>	
12	Role name: timePoint		0	1	< <feature>> TimePoint</feature>	
13	Role name: event		0	*	< <datatype>> TransitPointFeature Event</datatype>	

Table 1 – Data dictionary for TransitStop

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
14	Role name: facility		Ο	*	< <feature>> Facility</feature>	
15	Role name: transferCluster		0	*	< <feature>> TransferCluster</feature>	
16	TimePoint				< <feature>></feature>	Line 17
17	Role name: transitStop		0	*	< <feature>> TransitStop</feature>	
18	TransitPath				< <feature>></feature>	Line 19
19	Role name: event		0	*	< <datatype>> TransitPointFeature Event</datatype>	
20	Facility				< <feature>></feature>	Line 21
21	Role name: servicedStop		0	*	< <feature>> TransitStop</feature>	
22	TransferCluster				< <feature>></feature>	Line 23
23	Role name: publicStop		1	*	< <feature>> TransitStop</feature>	
24	Pattern				< <datatype>></datatype>	Line 25
25	Role name: transitStop		0	*	< <feature>> TransitStop</feature>	
26	TransitPointFeatureEvent				< <datatype>></datatype>	Lines 27-28
27	Role name: path		М	1	< <feature>> TransitPath</feature>	
28	Role name: stop		0	*	< <feature>> TransitStop</feature>	

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
29	RelativeLocation				< <datatype>></datatype>	Lines 30-36
30	onStreet	On street carriageway	М	1	CharacterString	Unrestricted
31	atStreet	At street	М	1	CharacterString	Unrestricted
32	distanceFromIntersection	Distance from intersection	М	1	Distance	Real
33	placementRelativeToIntersection	Feature placement relative to intersection	М	1	< <codelist> RelativeDirectionType</codelist>	Unrestricted
34	busPositionBay	Position of bus bay	0	1	CharacterString	Unrestricted
35	streetSide	Side street	0	1	CharacterString	Unrestricted
36	isOffStreet	Is on (or off) street	0	1	Boolean	True or False

6.5 ConnectionSeg

A ConnectionSeg is a linear path allowing transit riders to move from one TransitStop to another, and is shown in Figure 4. The segment may be defined as a walking path, bike path, escalator, or other modal connection. ConnectionSeg is a subtype of TranSeg and describes a linear feature that allows a transit rider to move between TransitStops. Attributes include distance, fromStop, toStop, and connection instructions. Accessibility information in the form of ObstacleTypes may optionally be provided for ConnectionSegs.

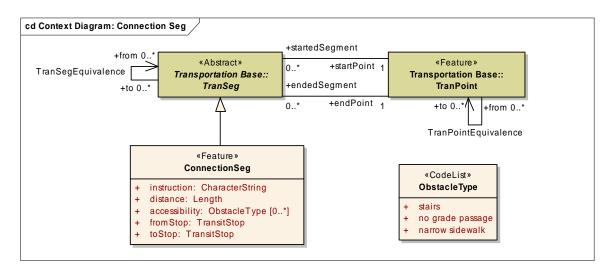


Figure 4 – ConnectionSeg

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
37	ConnectionSeg				< <feature>></feature>	Lines 38-42
38	instruction	Suitable ordered set of directions (TranSegs to follow or turns to make) that describe in plain English how to get from fromStop to toStop (for example, walking directions between to places)	М	1	CharacterString	Unrestricted
39	distance	Length of the ConnectionSegment	М	1	Length	Real
40	accessibility	Conditions that prevent persons with disabilities from using/traversing the ConnectionSegment	0	*	< <codelist>> ObstacleType</codelist>	Unrestricted
41	fromStop	Stop point identifier wherein the ConnectionSegment starts	М	1	< <feature>> TransitStop</feature>	Unrestricted
42	toStop	Stop point identifier wherein the ConnectionSegment ends	М	1	< <feature>> TransitStop</feature>	Unrestricted

Table 2 – Data dictionary for ConnectionSeg

6.6 TransitPath

TransitPath is a linear section of the transit network, which is designed for the movement of PTVehicles. TransitPath is a subtype of TranPath and is shown in Figure 5. Consequently, TransitPath has geometry of type GM_MultiCurve as defined in ISO 19107, and a topology of type TP_Complex. A TransitPath is an ordered set of zero or more TimePoint, TransitStop, or transportation segments from TranPath. Each TimePoint or TransitStop occurs at a location along the TransitPath. A TransitPath may also be known as a time point interval, route segment, variant or route pattern. TransitPaths may optionally have one or more patterns associated with it. These options reflect the wide variety of business practices in the transit community.



Figure 5 – TransitPath

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
43	TransitPath				< <feature>></feature>	Lines 44-45
44	Role name: event		Ο	*	< <datatype>> TransitPointFeature Event</datatype>	
45	Role name: pattern		0	*	< <datatype>> Pattern</datatype>	
46	Pattern				< <datatype>></datatype>	Line 47
47	Role name: transitPath		М	*	< <feature>> TransitPath</feature>	
48	TimePoint				< <feature>></feature>	Line 49
49	Role name: event		Ο	*	< <datatype>> TransitPointFeature Event</datatype>	
50	TransitStop				< <feature>></feature>	Line 51
51	Role name: event		0	*	< <datatype>> TransitPointFeature Event</datatype>	
52	TransitPointFeatureEvent				< <datatype>></datatype>	Lines 53-56
53	atPosition		М	1	< <type>> LR_PositionExpression</type>	Defined in ISO 19133
54	Role name: path		М	1	< <feature>> TransitPath</feature>	
55	Role name: timePoint		0	*	< <feature>> TimePoint</feature>	

Table 3 – Data dictionary for TransitPath

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
56	Role name: stop		0	*	< <feature>> TransitStop</feature>	

6.7 TimePoint

The TimePoint is a location where trips are assigned arrival, dwell, or departure time periods. TimePoint is a subtype of TransitFeature and is shown in Figure 6. The position of a TimePoint is expressed as type GM_Point. One or more TransitStops may optionally be associated with a TimePoint, as they sometimes (but not always) are associated with a TimePoint as part of the scheduling process. An ordered sequence of TimePoints demarcates a Trip. Each TimePoint in the sequence becomes a TransitTemporalEvent of the Trip. A TimePoint may occur more than once in a single trip, however, each occurrence is a unique temporal event. A TimePoint can be associated with zero to many (non-ordered) TransitTemporalEvents.

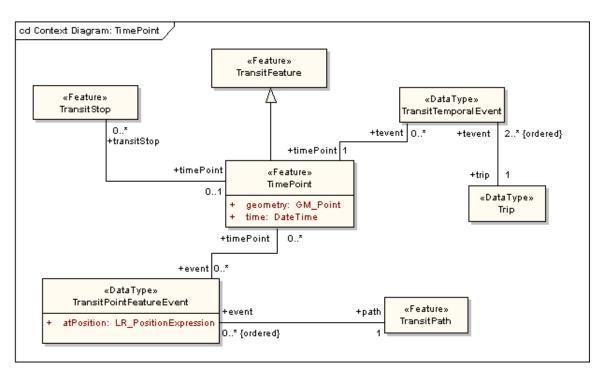


Figure 6 – TimePoint

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
57	TransitFeature				< <feature>></feature>	
58	TransitStop				< <feature>></feature>	Line 59
59	Role name: timePoint		0	1	< <feature>> TimePoint</feature>	
60	TimePoint				< <feature>></feature>	Lines 61-65
61	geometry	Shape and geo-location of a TimePoint	М	1	< <type>> GM_Point</type>	Defined in ISO 19107
62	time	Point or period when something occurs	М	1	DateTime	Valid historical or current time
63	Role name: event		0	*	< <datatype>> TransitPointFeature Event</datatype>	
64	Role name: transitStop		0	*	< <feature>> TransitStop</feature>	
65	Role name: event		0	*	< <datatype>> TransitTemporalEvent</datatype>	
66	TransitPath				< <feature>></feature>	Line 67
67	Role name: event		0	*	< <datatype>> TransitPointFeature Event</datatype>	
68	TransitPointFeatureEvent				< <datatype>></datatype>	Lines 69-71
69	atPosition		М	1	< <type>> LR_PositionExpression</type>	Defined in ISO 19133
70	Role name: timePoint		0	*	< <feature>> TimePoint</feature>	

Table 4 – Data dictionary for TimePoint

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
71	Role name: path		М	1	< <feature>> TransitPath</feature>	
72	Trip				< <datatype>></datatype>	Line 73
73	Role name: event		М	*	< <datatype>> TransitTemporalEvent</datatype>	
74	TransitTemporalEvent				< <datatype>></datatype>	Lines 75-76
75	Role name: timePoint		М	1	< <feature>> TimePoint</feature>	
76	Role name: trip		М	1	< <datatype>> Trip</datatype>	

6.8 Pattern

Pattern, as shown in Figure 7, is defined as an ordered sequence of TransitStops or TransitPaths that is followed by a transit vehicle in scheduled service. A Pattern may consist of zero to many ordered TransitStops or one to many ordered TransitPaths. A Pattern has one TransitRoute associated with it. Optionally, a Pattern may have one or more TransferClusters and one or more Trips associated with it.

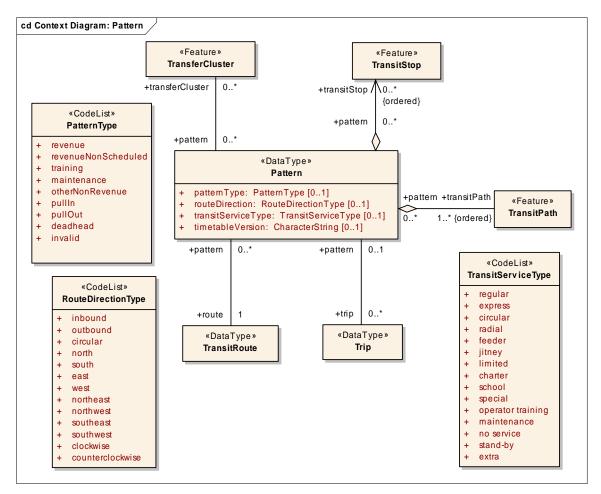


Figure 7 – Pattern

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
77	TransferCluster				< <feature>></feature>	Line 78
78	Role name: pattern		О	*	< <datatype>> Pattern</datatype>	
79	TransitStop				< <feature>></feature>	Line 80
80	Role name: pattern		0	*	< <datatype>> Pattern</datatype>	
81	TransitPath				< <feature>></feature>	Line 82
82	Role name: pattern		0	*	< <datatype>> Pattern</datatype>	
83	Pattern				< <datatype>>></datatype>	Lines 84-92
84	patternType	Class of Pattern	0	1	< <codelist>> PatternType</codelist>	Unrestricted
85	routeDirection	Description of the bearing of a route	0	1	< <codelist>> RouteDirectionType</codelist>	Unrestricted
86	transitServiceType	Class of the operations provision to the customer such as regular, express, charter, and so on	0	1	< <codelist>> TransitServiceType</codelist>	Unrestricted
87	timetableVersion	Unique identifier that associates the parts of a transit schedule	0	1	CharacterString	Unrestricted
88	Role name: transferCluster		0	*	< <feature>> TransferCluster</feature>	
89	Role name: transitStop		0	*	< <feature>> TransitStop</feature>	
90	Role name: transitPath		М	1	< <feature>> TransitPath</feature>	

Table 5 – Data dictionary for Pattern

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
91	Role name: trip		0	*	< <datatype>> Trip</datatype>	
92	Role name: route		М	1	< <datatype>> TransitRoute</datatype>	
93	Trip				< <datatype>></datatype>	Line 94
94	Role name: pattern		0	1	< <datatype>> Pattern</datatype>	
95	TransitRoute				< <datatype>></datatype>	Line 96
96	Role name: pattern		0	*	< <datatype>> Pattern</datatype>	

6.9 TransitRoute

A TransitRoute is a collection of patterns in revenue service with a common identifier. As shown in Figure 8, TransitRoute is a DataType associated with Patterns. One or more Patterns may optionally be associated with a TransitRoute and one TransitRoute is associated with a Pattern. A TransitRoute contains attributes that support the Transit Rider. The timeTableHeader is a summary of publically recognized TimePoints contained in a group of Patterns oriented in the same route direction, and is used to generate timetables.

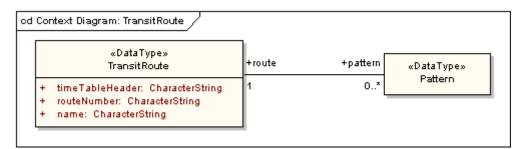


Figure 8 – TransitRoute

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
97	Pattern				< <datatype>></datatype>	Line 98
98	Role name: route		М	1	< <datatype>> TransitRoute</datatype>	
99	TransitRoute				< <datatype>></datatype>	Lines 100-102
100	timeTableHeader	Sequence of TimePoint identifiers and/or their names used to define the order of TimePoints for all Patterns of the TransitRoute in a RouteDirection	М	1	CharacterString	Unrestricted
101	routeNumber	Unique identifier for a TransitRoute recognized by the agency	М	1	CharacterString	Unrestricted
102	name	Unique identifier for a TransitRoute recognized by the customer	М	1	CharacterString	Unrestricted
103	Role name: pattern		0	*	< <datatype>> Pattern</datatype>	

Table 6 – Data dictionary for TransitRoute

6.10 Block

A Block is a sequence of trips over which a PTVehicle is assigned from pull out time to pull in time. A Block is associated with Trip as well as PTVehicle. Block is shown in Figure 9 and its composition includes scheduling information such as pull-in time, pull-out time, the pull-in base and pull-out base, status, and timetable version. There may be one-to-many ordered Trips associated with a Block, and one PTVehicle may optionally be associated with a Block.

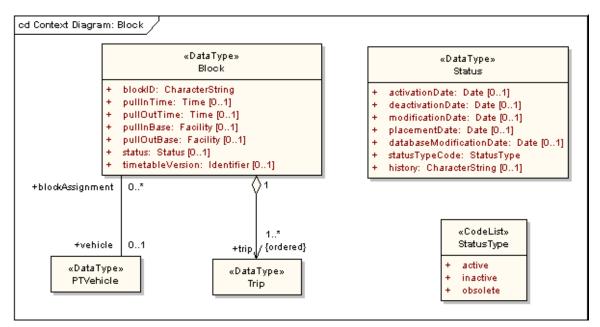


Figure 9 – Block

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
104	Block				< <datatype>></datatype>	Lines 105-113
105	blockID	Unique identifier for a block	М	1	CharacterString	Unrestricted
106	pullinTime	Moment at which a transit vehicle is scheduled to arrive at its Base from its last TimePoint of its scheduled revenue service	0	1	Time	Valid historical or current time
107	pullOutTime	Moment at which a transit vehicle is scheduled to depart its Base to arrive at its first TimePoint of its scheduled revenue service	0	1	< <feature>> Time</feature>	Valid historical or current time
108	pullInBase	Facility in which a revenue vehicle arrives after it completes its scheduled revenue service	0	1	< <feature>> Facility</feature>	Unrestricted
109	pullOutBase	Facility from which a revenue vehicle leaves in order to begin its scheduled revenue service	0	1	Facility	Unrestricted
110	status	Condition of a person, place or thing	0	1	< <datatype>> Status</datatype>	
111	timetableVersion	Unique identifier that associates the parts of a transit schedule	0	1	< <datatype>> Framework::Identifier</datatype>	Unrestricted
112	Role name: trip		М	*	< <datatype>> Trip</datatype>	
113	Role name: vehicle		0	1	< <datatype>> PTVehicle</datatype>	
114	Status				< <datatype>></datatype>	Lines 115-121
115	activationDate		0	1	Date	Unrestricted

Table 7 – Data dictionary for Block

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
116	deactivationDate		0	1	Date	Unrestricted
117	modificationDate		0	1	Date	Unrestricted
118	placementDate		0	1	Date	Unrestricted
119	databaseModificationDate		0	1	Date	Unrestricted
120	statusTypeCode		М	1	< <codelist>> StatusType</codelist>	Unrestricted
121	history		0	1	CharacterString	Unrestricted
122	Trip				< <datatype>></datatype>	
123	PTVehicle				< <datatype>></datatype>	Line 124
124	Role name: blockAssignment		0	*	< <datatype>> Block</datatype>	

6.11 PTVehicle

PTVehicle is the data type that contains the public transportation vehicle, and PTVehicle refers to any public transit conveyance. PTVehicle is shown in Figure 10, and contains information about the vehicle including vehicle capacity, vehicle type, as well as real-time routing and scheduling status. A PTVehicle is assigned to one vehicle base or Facility (at a time), and zero to many Blocks may be associated with a PTVehicle.

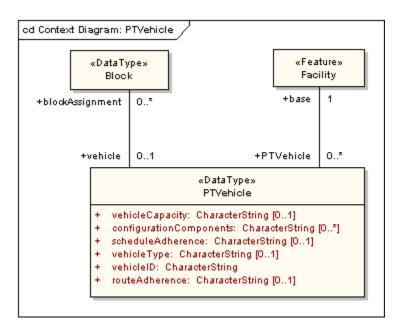


Figure 10 – PTVehicle

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
125	Facility				< <feature>></feature>	Line 126
126	Role name: PTVehicle		0	*	< <datatype>> PTVehicle</datatype>	
127	PTVehicle				< <datatype>></datatype>	Lines 127-135
128	vehicleCapacity	Maximum number of people that can safely ride the vehicle at any one time	0	1	CharacterString	Unrestricted
129	configurationComponents	List of physical input and output components	0	*	CharacterString	Unrestricted
130	scheduleAdherence	Time that a PTVehicle is ahead or behind its scheduled trip. The convention used is positive numbers indicate the PTVehicle is late and negative numbers indicating the PTVehicle is early	0	1	CharacterString	Unrestricted
131	vehicleType	Kind of vehicle within the agency fleet	0	1	CharacterString	Unrestricted
132	vehicleID	Unique identifier for a PTVehicle	Μ	1	CharacterString	Unrestricted
133	routeAdherence	Distance by which a PTVehicle is outside its expected path	0	1	CharacterString	Unrestricted
134	Role name: block assignment		0	*	< <datatype>> Block</datatype>	
135	Role name: base		М	1	< <feature>> Facility</feature>	
136	Block				< <datatype>></datatype>	Line 137

Table 8 – Data dictionary for PTVehicle

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
137	Role name: vehicle		0	1	< <datatype>> PTVehicle</datatype>	

6.12 TransferCluster

The TransferCluster is closely related to TransitStop since it is a collection of TransitStops where transit passengers can change routes. The TransferCluster has a geometry type of GM_Polygon as defined in ISO 19107 and is shown in Figure 11. The TransferCluster may be associated with zero to many Landmarks, or may be associated with zero to many Facilities. The TransferCluster is also a subtype of TranFeature. The TransferCluster may also optionally be associated with one or more Patterns. One or more TransitStops are aggregated to form a TransferCluster.

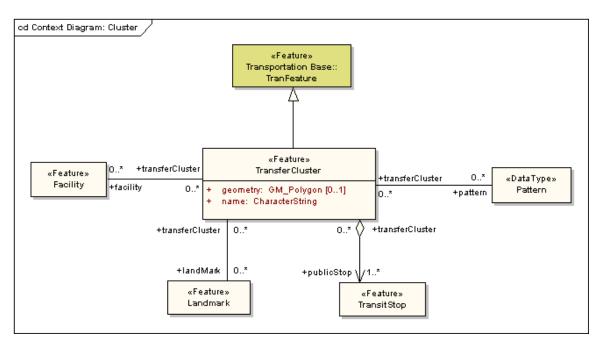


Figure 11 – TransferCluster

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
138	TransferCluster				< <feature>></feature>	Lines 139-144
139	geometry	Shape and geo-location of a TransferCluster	0	1	< <type>> GM_Polygon</type>	Defined in ISO 19107
140	name	Designation of a TransferCluster	М	1	CharacterString	Unrestricted
141	Role name: pattern		0	*	< <datatype>> Pattern</datatype>	
142	Role name: publicStop		М	*	< <feature>> TransitStop</feature>	
143	Role name: landMark		0	*	< <feature>> Landmark</feature>	
144	Role name: facility		0	*	< <feature>> Facility</feature>	
145	Facility				< <feature>></feature>	Line 146
146	Role name: transferCluster		0	*	< <feature>> TransferCluster</feature>	
147	Landmark				< <feature>></feature>	Line 148
148	Role name: transferCluster		0	*	< <feature>> Transfercluster</feature>	
149	TransitStop				< <feature>></feature>	Line 150
150	Role name: transferCluster		0	*	< <feature>> TransferCluster</feature>	
151	Pattern				< <datatype>></datatype>	Line 152
152	Role name: transferCluster		о	*	< <feature>> TransferCluster</feature>	

Table 9 – Data dictionary for TransferCluster

6.13 Landmark

A Landmark is a point of interest. Landmark is shown in Figure 12 and is a subtype of TranFeature. Landmark has a geometry type of GM_Point as defined in ISO 19107. Landmark is comprised of a name, a type, and an address. There may be zero-to-many TransferClusters associated with a Landmark. One Facility may optionally be associated with a Landmark.

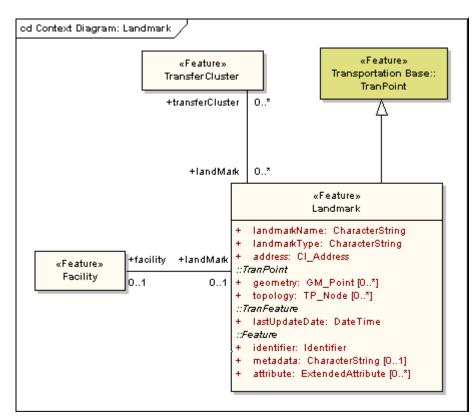


Figure 12 – Landmark

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
153	TransferCluster				< <feature>></feature>	Line 154
154	Role name: landMark		0	*	< <feature>> Landmark</feature>	
155	Landmark				< <feature>></feature>	Lines 156-166
156	landMarkName	Designation for a Landmark	М	1	CharacterString	Unrestricted
157	landMarkType	Category of Landmark	М	1	CharacterString	Unrestricted
158	address	Single combination of street name, postal community, State, and postal code	М	1	< <datatype>> CI_Address</datatype>	Defined in ISO 19115
159	Transportation Base:: TranPoint::geometry	Shape and geolocation of a feature	0	*	< <type>> GM_Point</type>	Defined in ISO 19107
160	Transportation Base:: TranPoint::topology	Connectivity of the participating elements	0	*	< <type>> TP_Node</type>	
161	Transportation Base:: TranFeature::lastUpdateDate	Timestamp indicating when the Landmark object was last edited	М	1	DateTime	Valid historical or current date and time
162	Framework::Feature:: identifier	Feature identifier for the Landmark	М	1	< <datatype>> Framework::Identifier</datatype>	Unrestricted
163	Framework::FeatureCollection:: Feature::metadata	Structured or unstructured metadata as defined by the community of practice	0	1	CharacterString	May be text or structured metadata fragment
164	Framework::Feature::attribute	Producer-defined attribute for inclusion in transfer	0	1	< <datatype>> Framework::Extended Attribute</datatype>	Unrestricted
165	Role name: transferCluster		0	*	< <feature>> TransferCluster</feature>	

Table 10 – Data dictionary for Landmark

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
166	Role name: facility		0	1	< <feature>> Facility</feature>	
167	Facility				< <feature>></feature>	Line 168
168	Role name: landMark		0	1	< <feature>> Landmark</feature>	

6.14 Facility

A Facility is a physical place that is used by a transit agency. Examples of transit facilities include parking locations, rail yards, and administrative offices. The Facility is a subtype of TransitFeature and is shown in Figure 13. Facility consists of a facility type code (code list given in Figure 13 below) and an address. One or more TransferClusters, TransitStops, and PTVehicles may optionally be associated with a Facility. One Landmark may optionally be associated with a facility. Figure 13 also shows that Facility is a subtype of TransitFeature.

Figure 13 – Facility

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
169	TransitFeature				< <feature>></feature>	
170	Facility				< <feature>></feature>	Lines 171-176
171	facilityTypeCode	Designation for a class of facility	М	1	< <codelist>> FacilityType</codelist>	Unrestricted
172	address	Single combination of street name, postal community, State, and postal code	0	1	< <datatype>> CI_Address</datatype>	Defined in ISO 19115
173	Role name: landMark		0	1	< <feature>> Landmark</feature>	
174	Role name: transferCluster		0	1	< <feature>> TransferCluster</feature>	
175	Role name: servicedStop		0	*	< <feature>> TransitStop</feature>	
176	Role name: PTVehicle		0	*	< <datatype>> PTVehicle</datatype>	
177	Landmark				< <feature>></feature>	Line 178
178	Role name: faclity		0	1	< <feature>> Facility</feature>	
179	TransferCluster				< <feature>></feature>	Line 180
180	Role name: facility		0	*	< <feature>> Facility</feature>	
181	TransitStop				< <feature>></feature>	Line 182
182	Role name: facility		0	*	< <feature>> Facility</feature>	

Table 11 – Data dictionary for Facility

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
183	PTVehicle				< <datatype>></datatype>	Line 184
184	Role name: base		М	1	< <feature>> Facility</feature>	

6.15 Amenity

Amenity refers to the elements of a physical feature, a fixed location, or a transit facility and is shown in Figure 14. The amenities of a public transportation stop, for example, may include the shelter, schedule displays, and bike racks. Amenity is a subtype of TransitFeature and may have a geometry of GM_Point. Amenity consists of the amenityType (code list given in Figure 14), name, and the hostingFeature, a TransitStop or Facility.

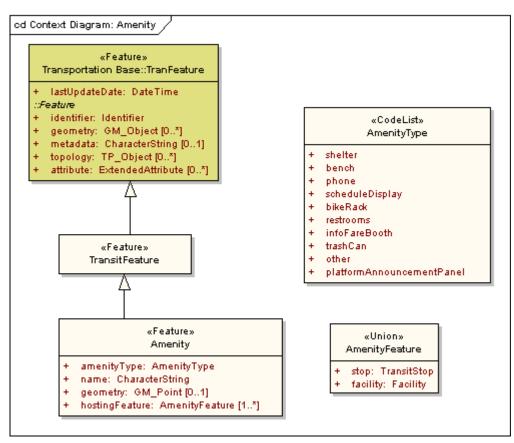


Figure 14 – Amenity

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
185	TransitFeature				< <feature>></feature>	
186	Amenity				< <feature>></feature>	Lines 184-188
187	amenityType	Class of amenity	М	1	< <codelist>> AmenityType</codelist>	Unrestricted
188	name	Designation for an amenity	М	1	CharacterString	Unrestricted
189	geometry	Shape and geo-location of a Amenity	0	1	< <type>> GM_Point</type>	Defined in ISO 19107
190	hostingFeature	Feature with which this amenity is associated	М	*	< <union>> AmenityFeature</union>	Unrestricted
191	AmenityFeature				< <union>></union>	Lines 192-193
192	stop		М	1	TransitStop	
193	facility		М	1	Facility	

Table 12 – Data dictionary for Amenity

6.16 Fare

The Fare is a data type that describes the cost for riding a transit vehicle. Fare is shown in Figure 15. The fareValue is expressed as a real number, and is based on the fromStop and the toStop attributes. The FareType is the type of fare, such as reduced (for example, senior citizen, student, and so on), full-fare, transfer, or special. FarePolicyTypes are the methods by which customer fares are determined within an agency or between agencies. The code lists for FareType and FarePolicyType are given in Figure 15.

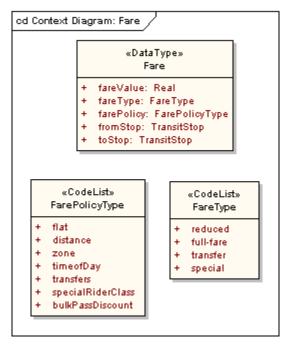


Figure 15 – Fare

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
194	Fare				< <datatype>></datatype>	Lines 195-199
195	fareValue	Monetary or ride amount	М	1	Real	Valid real number
196	fareType	Method by which the fareValue is determined	М	1	< <codelist>> FareType</codelist>	Unrestricted
197	farePolicy	Method in which the fare structure is organized	М	1	< <codelist>> FarePolicyType</codelist>	Unrestricted
198	fromStop	Origin of a customer's transit ride	М	1	< <feature>> TransitStop</feature>	Unrestricted
199	toStop	Destination of a customer's transit ride	М	1	< <feature>> TransitStop</feature>	Unrestricted

Table 13 – Data dictionary for Fare

6.17 Trip

A Trip is a one-way scheduled movement of a transit vehicle between starting and ending TimePoints. Each trip is an instance of a Pattern. Trip is a data type and is shown in Figure 16. One Pattern may optionally be associated with a Trip. One or more ordered Trips are aggregated to create one Block. Trip is demarcated by an ordered sequence of TimePoints. A Trip is composed of two or more ordered 'times' (TransitTemporalEvent instances). Each TimePoint in the sequence becomes a TransitTemporalEvent of the Trip. A TimePoint may occur more than once in a single trip, however, each occurrence is a unique temporal event.

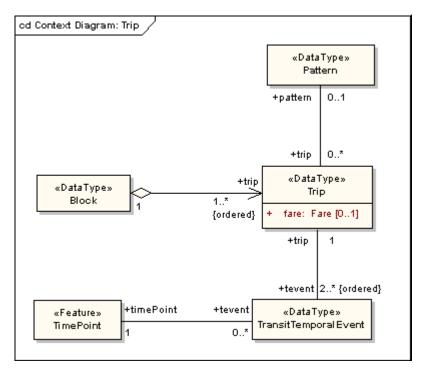


Figure 16 – Trip

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
200	TimePoint				< <feature>></feature>	Line 201
201	Role name: tevent		0	*	< <datatype>> TransitTemporalEvent</datatype>	
202	TransitTemporalEvent				< <datatype>></datatype>	Lines 203-204
203	Role name: timePoint		М	1	< <feature>> TimePoint</feature>	
204	Role name: trip		М	1	< <datatype>> Trip</datatype>	
205	Block				< <datatype>></datatype>	Line 205
206	Role name: trip		М	1	< <datatype>> Trip</datatype>	
207	Trip				< <datatype>></datatype>	Lines 208-210
208	fare		0	1	< <datatype>> Fare</datatype>	
209	Role name: tevent		М	*	< <datatype>> TransitTemporalEvent</datatype>	
210	Role name: pattern		0	1	< <datatype>> Pattern</datatype>	
211	Pattern				< <datatype>> Pattern</datatype>	Line 212
212	Role name: trip		0	*	< <datatype>> Trip</datatype>	

Table 14 – Data dictionary for Trip

7 Code lists

7.1 AmenityType code list

AmenityType is a CodeList of values for the attribute amenityType.

Name	Definition
shelter	Covered structure for passenger waiting
bench	Seat for passenger waiting
phone	Public Telephone
scheduleDisplay	Display for transit schedule
bikeRack	Racks for bicycles
restrooms	Public restrooms
infoFareBooth	Information/fare booth, kiosk, or display
trashCan	Trash receptacle
other	Amenity type not otherwise listed
platformAnnouncementPanel	

Table 15 – CodeList for AmenityType

7.2 FacilityType code list

FacilityType is a CodeList of values for the attribute facilityTypeCode.

Table 16 – CodeList for FacilityType

Name	Definition
parking	Parking for private vehicles
transitCenter	Centralized transit facility
railStation	Rail stop with associated station
customerService	Transit customer relations facility
otherRealProperty	Other real estate
powerStation	Electric power station
railYard	Switchyard for rail cars and locomotives
maintenance	Miscellaneous maintenance facility

Name	Definition
comfort	Restrooms for transit agency personnel
administrationBuilding	Transit administrative office
garagePullIn	Base where transit vehicle arrives following completion of revenue service
garagePullOut	Base where transit vehicle departs to complete its assigned revenue service
vehicleBase	
stopPoint	

7.3 FareType code list

FareType is a CodeList of values for the attribute fareType.

Name Definition reduced Discounted fare full-fare Regular fare transfer The cost for a proof of payment that permits transferring to another mode or service special Special fare

Table 17 – CodeList for FareType

7.4 FarePolicyType code list

FarePolicyType is a CodeList for the attribute farePolicy.

Table 18 – CodeList for FarePolicyType

Name	Definition
flat	Single price
distance	Distance-based pricing policy
zone	Zone-based pricing policy
timeOfDay	Time-based pricing policy
transfers	Inter-route transfer pricing policy
specialRiderClass	Fares for special classes of riders
bulkPassDiscount	Bulk ticket pricing policy

7.5 ObstacleType code list

ObstacleType is a CodeList for the attribute accessibility.

Table 19 – CodeList for ObstacleType

Name	Definition	
stairs	Set of steps	
noGradePassage	No paved path	
narrowSidewalk	Constricted walkway	

7.6 PatternType code list

PatternType is a CodeList for the attribute patternType.

Name	Definition	
revenue	Path representing a scheduled service provision for transit customers	
revenueNonScheduled	Path representing an unscheduled service provision for transit customers	
training	Path driven by transit operators in training	
maintenance	Path driven by transit maintenance personnel to test transit vehicles	
otherNonRevenue	A scheduled or unscheduled path over which service typically is not provided to transit customers	
pullin	Path between the last revenue service TimePoint of a Block and Pull-In location (for example, base entrance)	
pullOut	Path between the Pull-Out location (for example, base exit) and first revenue service TimePoint in a Block	
deadhead	Nonrevenue TransitPath between two revenue patterns	
invalid	Not a known path	

Table 20 – CodeList for PatternType

7.7 RouteDirectionType code list

RouteDirectionType is a CodeList for the attribute routeDirection.

Name	Definition	
inbound	Traveling Inbound typically toward the business district according to the route direction	
outbound	Traveling Outbound typically away from the business district according to the route direction	
circular	Traveling clockwise or counterclockwise in a circular direction	
north	Traveling in a northerly direction	
south	Traveling in a southerly direction	
east	Traveling in a easterly direction	
west	Traveling in a westerly direction	
northeast	Traveling in a northeasterly direction	
northwest	Traveling in a northwesterly direction	
southeast	Traveling in a southeasterly direction	
southwest	Traveling in a southwesterly direction	
clockwise	Traveling clockwise in a circular direction	
counterclockwise	Traveling counterclockwise in a circular direction	

Table 21 – CodeList for RouteDirectionType

7.8 StatusType code list

StatusType is a CodeList for the attributes statusInfo and statusTypeCode.

Table 22 – CodeList for	StatusType
-------------------------	------------

Name	Definition	
active	In active service	
inactive	Not in active service	
obsolete	Rendered obsolete	

7.9 TransitServiceType code list

TransitServiceType is a CodeList for the attribute transitServiceType.

Name	Definition	
regular	Local or typical service	
express	Rapid service; may be due to fewer stops along the pattern	
circular	Service operating in a circle	
radial	Operations that coordinates service from a central location	
feeder	Service that collects passengers from outlying locations to a centralized route	
jitney	Service which allows potential customers to flag a transit vehicle	
limited	Service which is limited to fewer stops	
charter	Contracted services	
school	Services provided to serve schools	
special	Special services	
operatorTraining	Service for operator to train on a route or pattern	
maintenance	Service used for maintenance	
noService	No service provided	
stand-by	Operations waiting to provide services if necessary	
extra	Operations that are ready to provide services if needed	

Table 23 – Codelist for TransitServiceType

Annex A (informative) Trip itinerary planning use case

A.1 Introduction

In developing this part of the Framework Data Content Standard, specific transit use cases were utilized to assist in defining the transit model. While these use cases are not comprehensive in defining all the potential uses of transit data, they were critical in providing focus for the development team. In future versions of the Transit part, additional use cases will be developed to facilitate expansion of the transit model.

A.2 Supported operation

A.2.1 Overview and description

A customer seeks information related to point-to-point travel plans that includes public transportation services such as bus, rail, or other mode. The trip itinerary request may be based on several key criteria such as origin, destination, travel date/time, amenities desired, traveler profile, trip constraints (that is to say, lowest cost, shortest time, fewest transfers, mode, accessibility, time of day, day of week), and one way or return trip. Trip plan may include real-time information on schedule adherence, route adherence, and service changes due to "incidents" (see Annex C, Unplanned rerouting use case).

A.2.2 Concept of operations

Detailed below is the concept of operations for the trip itinerary planning use case.

- Customer generates a trip request identifying origin, destination, and time/date of travel (potentially specifying preference criteria pertaining to cost, transfer, mode/carrier, and so on)
- The Trip Planning System verifies that request is complete and accurate. When verified it processes customer request and generates a trip plan
- The Trip Planning System verifies that the scheduled data is still valid on all legs for near term (review trip plan against reroutes, updates, and planned events). If there are exceptions, the system regenerates the itinerary

For trip plans in the near future, the system checks real-time status of service. If there are exceptions, it regenerates the itinerary.

A.2.3 Enumeration of needs

The following functions are needed to respond to customer requests for trip itinerary requests.

Request and verify customer trip criteria.

- Provide options for selecting origin and destination
 - Potential origin and destination names should be comprehensive including addresses, vanity addresses, intersections, Landmarks (for example, malls, squares, hospitals, and so on), community centers (for example, Hyde Park in Chicago)

- Provide service and amenity options for different modes
 - o Date
 - Departure or arrival time
 - o Service area
 - o Routes/trips
 - Public transportation stops
- Provide options for criteria selection ("minimizing") including
 - Shortest trip (travel time , trip distance)
 - Shortest walking/driving distance (access/egress)
 - Least number of transfers
 - o Least costly
- Provide options for including/excluding various criteria including
 - o Mode
 - o Via landmark
 - Amenity at stop point (for example, parking availability, accessibility)
 - Service types (for example, express or local)
 - o Route
 - Fare media (for example, pass, cash, credit card)
 - o Accessibility

Provide transit trip itinerary plan based on customer criteria.

- Provide driving or walking/biking directions and distances to/from selected public transportation stops to/from origin/destination
 - Identify obstacles, barriers, accessibility, amenities for directions to/from public transportation stops
- Provide directions for walking between transfer points
- Provide transit information on planned bus route numbers, travel direction, schedules and current operations including route numbers, departure/arrival times and locations, and transfers within a mode and between modes
- Provide service information on different modes including planned and unplanned detours and real-time schedule adherence information
- Provide amenity information on public transportation stops
- Provide fare cost information for planned trip
- Provide estimated travel time for the itinerary
- Provide a written trip itinerary summary containing the sequential unlinked trip making activities including origin, boarding bus stop location and ID number, first transit route, alighting location, transfer to 2nd bus route information including boarding & alighting, and so on, until the final destination

To meet these user needs, the following data needs should be supported.

- Provide a topologically complete and logically consistent transportation network including street names and addresses, alternate street names, cities, zip codes, barriers
- Provide a complete list of street names and landmarks including park and rides, transit centers, and neighborhood locations
- Provide a complete and logically consistent transit network and features
 - Patterns, public transportation stops and time points over all transit modes, and transfer points
 - Revenue trip times (particularly detailed bus trip schedules referenced to trip pattern spatially on a stop-by-stop or TimePoint-by-TimePoint level), and estimated transfer and wait times at stop points (by time of day)
- Provide fare information for all combinations of itineraries (including transfers)
- Provide real-time schedule adherence data
- Provide park-n-ride, transit center data on location, size, amenity, and other characteristics description
- Provide bus stops list on American Disabilities Act (ADA), amenity, shelter, and other relevant characteristics
- Provide unplanned rerouting information (see Unplanned Re-routing use case)

A.3 Functional requirements for supported operation

A.3.1 Overview of requirements

The Trip itinerary plan (TIP) use case is supported through various requirements.

- Request and verify trip itinerary request
- Provide trip itinerary plan to customer

A.3.2 Detailed functional requirements

Table A.1 below provides detailed functional requirements for TIP operations.

Table A.1 – Trip itinerary planning (TIP) functional requirements

Requirements			
TIP.1 – Request and verify trip itinerary criteria			
TIP.1.1 – The system shall provide options to the customer to create an itinerary request. The information components needed for this requirement are:			
Information on service area, modes, routes, public transportation stop points			
Information on origin, destination, date, and time of travel			
 Information on service types and trips per route (including attributes of each trip in the route, for example, wheel chair accessibility, bike, or ski rack) 			
Information on fare media accepted			
Information on public transportation stop points, their amenities, and accessibility			
Information on allowable criteria selection features (include and exclude; minimize)			

Requirements

TIP.1.2 – The system shall verify that the customer request is complete and accurate. In addition to the information components listed in TIP 1.1, this requirement needs the following information components:

- Information on addresses, vanity addresses, landmarks, alternate street names
 - Complete list of street names and landmarks

TIP.2 – Provide transit trip itinerary plan to the customer

TIP 2.1 – The system shall develop a transit trip itinerary based on customer criteria. To accomplish this, the systems shall determine several alternative itineraries. The internal functions are:

- The location of entry and exit into the transit network
- The most efficient path from entry to exit in the transit network (based on selected criteria), this may require incorporating walking and wait times at transfer locations
- Walking directions for transfer
- Walking and driving directions from/to origin/destination and to/from entry/exit points including barriers, obstacles, and modal network connections within the transportation network
- List of amenities at specific public transportation stop points associated with plan
- Calculate fares and allowable fare media (including transfers) per leg as well as total cost
- Calculate total travel time
- Calculate total walking time
- Generate return trip (if requested)

The information components needed for this requirement are:

- For Origin/Destination and Walking and Driving Directions
 - Topologically complete and logically consistent transportation network including street names and complete addresses
- For Developing the Transit Trip Plan

0

- Complete and logically consistent transit network and features
 - Patterns, public transportation stop points and time points over all transit modes, and transfer points
 - Revenue trip times (each bus trip can be geo-referenced by trip pattern spatially on a stop-by-stop or TimePoint-by-TimePoint level), and estimated transfer and wait times at stop points (by time of day)
- Fare Information for all combinations of itineraries (including transfers)

TIP 2.2 – The system shall verify the trip itinerary plan against any planned or unplanned detours, delays or special services. The information components needed for this function are:

- Unplanned rerouting along the trip plan
- Status of Planned/construction of TranSeg along the trip plan
- Special service schedules (auxiliary parking facilities that are used as pick-up/drop-off points)

<<The information components needed to support this function are not included in the Data Mapping section>>

TIP 2.3 – The system shall provide real-time updates on itineraries that are scheduled for the near future (for example, within an hour). The information components needed for this function are:

Estimated departure/arrival times of vehicles designated to perform selected trips in itinerary

<<The information components needed to support this function are not included in the Data Mapping section>>

A.4 Mapping data requirements to current transit model

The data requirements necessary for trip itinerary planning use case are described in Table A.2 below.

Data Requirements	Definitions	Assumptions/Conditions	
Public transportation stop	An established location where public transport customers may board or alight from a transit vehicle in revenue service	Attributes: see Annex B (informative) Public transportation stop inventory sharing use case Include: • Wait times • Fare Zone (if applicable)	
Amenity	The elements of a physical feature, a fixed location, or a transit facility. The amenities of a public transportation stop, for example, may include the shelter, platform announcement panel, and benches. An amenity may be described by one or more characteristics, or attributes, such as the year of construction or its current condition	Unique ID, name, type. Domain types: list the known types and add "other"	
Transfer clusters	A transfer cluster is a geographic location that encompasses more than one bus stop where a customer can move from one route to another. Defined the same as TransferCluster	Transfer cluster could have an associated impedance. Then it might not be accessible. TransferClusters need to be composed of public transportation stops and unique identifier. Impedance, walking directions between stop points should also be included	

Table A.2 – Trip planning data requirements

Patterns provide the path of the trips, temporal service information is contained in the trips. Patterns serve a function similar to "anchor points" in Part 7:: Roads. The density of TimePoints is directly related to the accuracy meeded in the schedule Patterns (including routes) A unique, non-branching, ordered sequence of TimePoints, street links, public transportation stops from the beginning of a route to the end of a route • Pattern is an ordered sequence of TimePoints, street links, public transportation stops from the beginning of a route to the end of a route Patterns (including routes) • Pattern is an ordered sequence of TimePoints, street links, public transportation stops from the beginning of a route to the end of a route • Pattern type • Unique, non-branching, ordered sequence of TimePoints. Street links, public transportation stops from the beginning of a route to the end of a route • Pattern type • Unique, non-branching, ordered sequence of the block • Pattern type • Unique, non-branching, ordered sequence of the block • Pattern type • Unique, non-branching, ordered sequence of transportation stops from the beginning of a route • Service type - local/express • Unique, non-branching, ordered sequence of transportation stops from the beginning of a route of the and and area transportation stops geometry. • Service type - local/express • Ordered sequence of transportation stop determent. • Ordered sequence of transportation stop determents • Status • ID • ID<	Data Requirements	Definitions	Assumptions/Conditions	
Patterns (including routes) A unique, non-branching, ordered sequence of TimePoints, art set inks, public transportation stop include of the block Image: Second Seco			information is contained in the trips. Patterns serve a function similar to "anchor points" in Part 7c: Roads. The density of TimePoints is directly related to the	
Patterns (including routes) ordered sequence of TimePoints, street links, public transportation stops from the beginning of a route to the end of a route • Pattern type Patterns (including routes) public transportation stops from the beginning of a route to the end of a route • Service type – local/express • Ordered sequence of streets (TranSeg) that make up the pattern, which furnishes geometry • Ordered sequence of streets (TranSeg) that make up the pattern, which furnishes geometry Note: At Washington Metropolitan Area Transit Authority (WMATA), path/route is an ordered sequence of TimePoints. For trip planning, there is an ordered set of road segments or an ordered set of TimePoints Streets Street links: Streets • ID Address ranges Set of sequential numerical addresses along a street segment Address ranges Set of sequential numerical addresses along a street segment Landmarks Points or areas of interest			as well as time points, and stops. But transit agencies usually use the whole segment, rather than portions of segments, even when the public transportation stop	
Patterns (including routes) TimePoints, street links, public transportation stops route to the end of a route • Pattern type Service type – local/express • Schedule version Model Element: • Ordered sequence of streets (TranSeg) that make up the pattern, which furnishes geometry Note: At Washington Metropolitan Area Transit Authority (WMATA), pathroute is an ordered sequence of TimePoints. For trip planning, there is an ordered sequence of TimePoints Streets Street links: Streets • ID Address ranges Set of sequential numerical adfresses along a street segment Address ranges Set of sequential numerical adfresses along a street segment Landmarks Points or areas of interest			Fields include:	
Streets Set of sequential numerical addresses along a street segment Streets Streets Streets Address ranges Set of sequential numerical addresses along a street segment Streets Streets Streets Landmarks Points or areas of interest Streets Stee Annex D (informative) Address extension to the transit model	Patterns (including routes)	•	Pattern type	
route to the end of a route • Schedule version Model Element: • Ordered sequence of streets (TranSeg) that make up the pattern, which furnishes geometry Note: At Washington Metropolitan Area Transit Authority (WMATA), path/route is an ordered sequence of TimePoints. For trip planning, there is an ordered set of road segments or an ordered set of segment is topology (optional) Atdress ranges Set of sequential numerical addresses along a street segment See Annex D (informative) Address extension to the transit model Landmarks Points or areas of interest Landmark attributes: • Name • Type • Type	r allerns (melduling roules)		Service type – local/express	
Address ranges Set of sequential numerical addresses along a street segment Set of sequential numerical addresses along a street segment Landmarks Points or areas of interest Set of sequential numerical addresses of interest Landmarks Points or areas of interest Set of sequential numerical addresses of interest Landmarks Points or areas of interest Set of sequential numerical addresses of interest Landmarks Points or areas of interest Set of sequential numerical addresses of interest Landmarks Points or areas of interest Set of sequential numerical interest			Schedule version	
Address ranges Set of sequential numerical addresses along a street segment Set of sequential numerical addresses along a street segment Landmarks Points or areas of interest Set of sequence interest			Model Element:	
Authority (WMATA), path/route is an ordered sequence of TimePoints. For trip planning, there is an ordered set of road segments or an ordered set of road segments or an ordered set of TimePoints Street links: ID TranSeg: Status Iength geometry (optional) Ald other attributes that pertain to roads are classified as linear or point events Address ranges Set of sequential numerical addresses along a street segment Landmarks Points or areas of interest Landmarks Points or areas of interest			make up the pattern, which furnishes	
StreetsIDStreets· Status · length · geometry (optional) · topology (optional) All other attributes that pertain to roads are classified as linear or point eventsAddress rangesSet of sequential numerical addresses along a street 			Authority (WMATA), path/route is an ordered sequence of TimePoints. For trip planning, there is an ordered set of road segments or an ordered set of	
StreetsTranSeg: • Status • length • geometry (optional) • topology (optional) All other attributes that pertain to roads are classified as linear or point eventsAddress rangesSet of sequential numerical addresses along a street segmentSee Annex D (informative) Address extension to the transit modelLandmarksPoints or areas of interestLandmark attributes: • Name • Type			Street links:	
Streets• Status • length • geometry (optional) • topology (optional) All other attributes that pertain to roads are classified as linear or point eventsAddress rangesSet of sequential numerical addresses along a street segmentSee Annex D (informative) Address extension to the transit modelLandmarksPoints or areas of interestLandmark attributes: • Type			• ID	
Streets• lengthStreets• geometry (optional)• topology (optional)All other attributes that pertain to roads are classified as linear or point eventsAddress rangesSet of sequential numerical addresses along a street segmentLandmarksPoints or areas of interestPoints or areas of interest• Name • Type			TranSeg:	
Address ranges Set of sequential numerical addresses along a street segment See Annex D (informative) Address extension to the transit model Landmarks Points or areas of interest Landmark attributes: Name Type 			Status	
• topology (optional) All other attributes that pertain to roads are classified as linear or point events Address ranges Set of sequential numerical addresses along a street segment Landmarks Points or areas of interest Landmarks Points or areas of interest	Streets		length	
All other attributes that pertain to roads are classified as linear or point events Address ranges Set of sequential numerical addresses along a street segment Landmarks Points or areas of interest			geometry (optional)	
Address ranges Set of sequential numerical addresses along a street segment See Annex D (informative) Address extension to the transit model Landmarks Points or areas of interest Landmark attributes: Name Type 			topology (optional)	
Address ranges addresses along a street segment See Annex D (informative) Address extension to the transit model Landmarks Points or areas of interest Landmark attributes: • Name • Type				
Landmarks Points or areas of interest • Name • Type	Address ranges	addresses along a street		
Landmarks Points or areas of interest Type			Landmark attributes:	
• Туре	Landmarks	Points or areas of interest	Name	
			• Type	

Data Requirements	Definitions	Assumptions/Conditions	
Parking lots	Locations where public or pay spaces are available for motor vehicles	Attributes: ID Public transportation stop(s) served Transit routes served and schedules Owner (optional) Facility phone (optional) Total spaces Operating hours Parking provided for each vehicle class (spaces, rates, permissible entrances, fill time, other information) (optional) Availability of charging facility for electric cars (optional) Bicycle storage and lock facility (optional) 	
Walking distance	TranSeg	Linear distance as measured by the geographic transportation network	
Accessibility	Category of difficulty in accessing a location	Curb cuts and corners are needed for ADA compliance. They should be attached to the road segment	
Obstacles to walking, grade data	Impediments to traversal of street and/or walkway areas	An attribute is added to the TranSeg; "walking permitted – yes/no." The attribute is applied to each individual road segment. An obstacle could be a linear event, but is often just a Boolean attribute on a segment. Typically, one can walk along or walk over. The value applies to the entire segment	
Fare data (based on distance, or zones, or flat)	Information on the calculation of transit access prices	Types of fare policies: • Flat • Distance • Zone • Time of day • Transfers • Special rider classes (elderly, youth, disabled) • Bulk pass discount Six-dimension table is required to handle the relationships between all the variations in fare types See section 0 for guidance on TCIP Fare Collection Fare Tables (NTCIP 1408)	

Federal Geographic Data Committee Geographic Information Framework Data Content Standard Part 7d: Transportation – Transit Annex A (informative): Trip itinerary planning use case

Data Requirements	Definitions	Assumptions/Conditions
Schedules	From TCIP: "A table that includes all the time points and trips on a route. Contained within the SchRoute is the Master Schedule Header information. Contained within SchTrip is the day type information"	 For each route: Time table version Activation date Deactivation date All supported trips assembled by route direction, service type, and day type All supported trips in correspondence to the trip pattern number
Trips	One way scheduled movement of a transit vehicle between starting and ending time points	Attributes: ID Trip type Ordered sequence of time points with their times (of arrival) Pattern ID (associated with) Time table version
Pedestrian (sidewalks, bike paths, walking paths, centerline dividers)	Locations designated for pedestrian traffic	Attributes: • TBD

A.5 Guidance on how to specify a fare table using TCIP standard on fare collection business objects (NTCIP 1408:2001)

A.5.1 General

The TCIP fare collection standard supports a variety of fare tables. Each is packaged as data stream of fare character costs that is based on the fare policy and fare media used. The fare table includes identifiers to the data stream definition through the table-type-id (zone or distance based fare tables) and list-of-fare-character-cost (fare media type) fields.

The steps for defining fare tables are defined in Table A.3 below. Each of these steps is discussed in more detail in the sections below.

Table A.3 – Fare definition steps

1. Develop fare tables for a specific agency/mode based on the validity date of the fare policy (that is to say, activation-datetime, deactivation-datetime)

2. Identify fare policy type and develop indices to define boarding/alighting pairs:

- Zone
- Distance
- Flat fare is a generalization from either the zone or distance based fare (one dimensional matrix)
- 3. Calculate the Cost based on Fare Media Type
- 4. Define the Time Period Table
- 5. Define the Fare Instruments
- 6. Identify Exceptions

FcFareTable ::=SEQUENCE {

id FC-FareTableID, time-period-table-id FC-TimePeriodTabeIID, table-type-id CHOICE { zone-table-id FC-FareZoneTableID, distance-table-id FC-FareDistanceTableID } OPTIONAL, mode CPT-Mode OPTIONAL, agency-id CPT-AgencyID OPTIONAL, activation-datetime CPT-DateTime OPTIONAL, deactivation-datetime CPT-DateTime OPTIONAL, list-of-fare-character-cost SEQUENCE OF FcFareCharacterCost, input-parameters OCTET STRING OPTIONAL --these are the base values of the table when an algorithm is --specified in the FcFareCharacterCost record

}

A.5.2 Fare tables and fare policy type

- 1. Develop fare tables for a specific agency/mode based on the validity date of the fare policy (that is to say, activation-datetime, deactivation-datetime)
- 2. Identify fare policy type and develop indices to define boarding/alighting pairs:
 - Zone
 - Distance
 - Flat fare is a generalization of either the zone or distance based fare (one dimensional matrix)

Zone based fare tables

Identify all combinations of boarding zones and alighting zones. Each cell has an index.

Table A.4 – Fare zone table (FcFareZoneTable)

Boarding / Alighting Zone	Zone 1 (boarding-zone-id)	Zone 2
Zone 1 (alighting-zone-id)	1 (index)	2
Zone 2	3	4

FcFareZoneTableEntry defines each cell index by boarding and alighting zones.

```
FcFareZoneTableEntry ::=SEQUENCE {
index FC-FareZoneIndex,
boarding-zone-id CPT-FareZoneID,
alighting-zone-id CPT-FareZoneID }
```

FcFareZoneTable lists all the cells contained in the table (see Table A.4). Because the table may be valid at certain times or certain days (for example, peak hour fares) an optional field may be set to specify the validity of the activation and deactivation of date/time. Furthermore, there is a business rule that for each FcFareZoneTable (identified by a separate index – FC-FareZoneTableID), each cell index (FC-FareZoneIndex) in the list-of-cell-indices shall be unique.

FcFareZoneTable ::=SEQUENCE {id FC-FareZoneTableID, list-of-cell-indices SEQUENCE OF FC-FareZoneIndex, activation-datetime CPT-DateTime OPTIONAL, deactivation-datetime CPT-DateTime OPTIONAL, agency-id CPT-AgencyID OPTIONAL}

Distance based fare tables

The Distance based fare tables are organized in a similar fashion. A basic matrix is defined by the FcFareDistanceTable (see Table A.5). Each entry or cell in the table is defined by a FcFareDistanceTableEntry. An assumption is made that there are a finite number of stop points in the system, and so, the FcFareDistanceTable is defined as a matrix of boarding and alighting stop points.

Boarding / Alighting Stop Point	Stop # 1001 (boarding-stop-point-id)	Stop #1002
Stop # 1001 (alighting-stop-point-id)	1 (index)	2
Stop # 1002	3	4

Table A.5 – Fare distance calculations matrix (FcFareDistanceTable)

FcFareDistanceTableEntry ::=SEQUENCE {

index FC-FareDistanceIndex, boarding-stop-point-id CPT-StopPointID, alighting-stop-point-id CPT-StopPointID }

The FcFareDistanceTable entry also includes a mandatory field on the type of distance that is calculated: linear (along the path) or line-of-sight. Similar to the zone based fare table, the distance table is identified by a unique index and each cell in the list-of-fare-cell-indices should be unique.

FcFareDistanceTable ::=SEQUENCE { id FC-FareDistanceTableID, type FC-FareDistanceType, activation-datetime CPT-DateTime, list-of-fare-cell-indices SEQUENCE OF FC-FareDistanceIndex }

A.5.3 Calculating the cost based on fare media type

The cost of a ride may be based on:

- Rider classification (for example, regular, senior, child)
- Service type (for example, regular, express, local, loop)
- Time (period) of day traveling (see definition of FcTimePeriodTable below)
- Fare instrument (see definition of FcFareInstrument below)
- Distance or zones traveled through (FcFareZoneTable and FcFareDistanceTable)

So the cost is based on a five dimensional table. The best way to approach defining the cost is to approach the first four fields: rider classification, service type, time period and fare instrument fixed and fill in the cost for the distance or zone policy.

For example, the fare at Metro MTA on a bus for a regular rider, riding on an express during morning peak using cash will pay a monetary cost of monetary-value. Each unique definition for the FcFareCharacterCost will be associated with a unique index (FC-FareCharacterCostIndex). (See Table A.6 for character code values.)

The amount of each character cost entry is defined by at least one of the following:

- Monetary cost
- Ride cost
- Algorithm for calculating the value of either ride or monetary cost

FcFareCharacterCost ::=SEQUENCE {

index FC-FareCharacterCostIndex, rider-classification FC-RiderClassification, service-type SCH-ServiceType OPTIONAL, time-period-index FC-TimePeriodIndex OPTIONAL, fare-type-index CHOICE { fare-zone-index FC-FareZoneIndex, fare-distance-index FC-FareDistanceIndex} OPTIONAL, list-of-fare-instrument-ids SEQUENCE OF FC-FareInstrumentID, monetary-value FC-FareCost OPTIONAL, ride-value FC-RideValue OPTIONAL, algorithm OCTET STRING OPTIONAL --(executable or algorithm for -- calculating fare) } (WITH COMPONENTS {..., monetary-value PRESENT}] WITH COMPONENTS {..., ride-value PRESENT}] WITH COMPONENTS {..., algorithm PRESENT})

Data Element Name	Definition	Code Values
FC-RiderClassification	A means of classifying the types of riders on public transportation vehicles	FC-RiderClassification ::=INTEGER { regular (1), senior (2), child (3), student (4), youth (5), ada-customer (6), promotional (7), employee (8), retired-employee (9), public-assistance-customer (10) 11-155 reserved 156-255 local use } (0255)
SCH-ServiceType	Type of transit service provided	SCH-ServiceType ::=INTEGER { regular (1), express (2), circular(3), radial (4), feeder (5), jitney (6), limited (7), nonRevenue (8), unknown (9), charter (10), school (11), special (12), operatorTraining (13), maintenance (14), noService (15), standBy (16), extra (17) 18-149 reserved 150-255 local use } (0255)

 Table A.6 – Data element code values for select FcFareCharacterCost fields

A.5.4 Defining the time period table

The fcTimePeriod table may be defined for the calendar or by day type. Each cell (each column in Table A.7) in the FcTimePeriod table is defined by FcTimePeriodEntry.

Table A.7 – Example of a FcTimePeriod table for weekday (day type)

begin-time to end-time	5:30-7:30 (early am)	7:30-9:30 (morning peak)	9:30-3:30 (mid-day)	3:30-7:00 (afternoon peak)	7:00-12:00 pm (night)
index [FC- TimePeriodIndex]	1	2	3	4	5

Federal Geographic Data Committee Geographic Information Framework Data Content Standard Part 7d: Transportation – Transit Annex A (informative): Trip itinerary planning use case

FcTimePeriodEntry ::=SEQUENCE{ index FC-TimePeriodIndex, begin-time TIME, end-time TIME, day CHOICE { calendar-date CPT-CalendarDate, day-type SCH-DayType }

}

The collection of FcTimePeriodEntry completes the FcTimePeriodTable. Each FC-TimePeriodIndex shall be unique for a single time period table (FC-TimePeriodTableID). A calendar may be designed for this format. Each segment of time within a calendar date may be assigned a unique identifier.

FcTimePeriodTable ::=SEQUENCE {

id FC-TimePeriodTableID, list-of-time-period-indices SEQUENCE OF FC-TimePeriodIndex, agency-id CPT-AgencyID OPTIONAL, activation-date CPT-ActivationDate OPTIONAL, deactivation-date CPT-DeactivationDate OPTIONAL

}

A.5.5 Defining fare instruments

Many transit agencies support various types of fare categories and instruments (see Table A.8 for instrument names and definitions). There are daily, weekly and monthly passes, combination passes, tickets, trip checks, transfers, tokens, rider cards, rider discount cards, "golden" passes, and of course, cash. There are four ways of defining fare instruments:

- Based on ride value
- Based on cash value
- Based on unlimited number of rides over a period of time
- Other

Also, fare instruments may be used in combination, for example, ten cents with a senior pass.

Fare Instrument Name	Fare Instrument Definition
FcFareInstrument	The definition of a valid fare instrument that can be used by a specific public transportation service. A fare instrument may be defined as multiple value instruments, for example, ten cents with a senior pass
FcMonetaryInstrumentDefinition	The definition of a type of instrument that possesses a monetary value including cash (bills and coins), tokens, tickets, passes, and so on
FcFareMediaOtherDefinition	A fare instrument which does not fall into monetary, ride, or pass categories. (This may include an employee or retired identification card)
FcPassInstrumentDefinition	A fare instrument which contains unlimited number of rides over a period of time, for example, monthly, weekly, and daily passes

Table A.8 – TCIP definition of various fare instruments

Fare Instrument Name	Fare Instrument Definition
FcRideInstrumentDefinition	The definition of a fare instrument that possesses a ride value for a trip on a public transportation vehicle serving a transit agency or a region fare structure

Ride instrument definition

The ride instrument may be a token, ticket (like a transfer), pass fare card, or transit check. The value is expressed as a ride. There may be restrictions on the ride such as mode choice, route or line choices, or Transit agency providing the service.

FcRideInstrumentDefinition ::=SEQUENCE {

id FC-RideInstrumentID, type FC-RideInstrumentType, description FC-RideInstrumentDescription, value FC-RideValue, agency-id CPT-AgencyID, list-of-modes-accepted SEQUENCE OF CPT-Mode OPTIONAL, list-of-routes-accepted SEQUENCE OF SCH-RouteName OPTIONAL list-of-lines-accepted SEQUENCE OF SCH-BlockName OPTIONAL }

FC-RideInstrumentType

- token (1)
- ticket (2)
- pass-fare-card (3)
- transit-check (4)

Pass instrument definition

The pass instrument is typically a card, magnetic stripe, flash, transit check, or smart card. The pass permits unlimited travel for a certain period of time. Although many places issue magnetic stripe or smart cards for the value of one ride or for a purse of cash, this category should not be confused with those alternative instrument classifications. In the FcPassInstrumentDefinition message, the expiration-datetime defines the time and date that the card expires. If the instrument is activated on first use, then the field is set on entry to the system. With the pass instrument, there may be restrictions associated with its use such as mode, routes, and lines. A transfer may also be defined as a pass instrument if the transfer is based on its use over a period of time, for example, two hours since issue.

FcPassInstrumentDefinition ::=SEQUENCE {

id FC-PassInstrumentID, type FC-PassInstrumentType, description-FC-PassInstrumentDescription OPTIONAL, agency-id CPT-AgencyID OPTIONAL, --issuer of pass instrument value FC-PassValue, expiration-datetime FC-ExpirationDateTime OPTIONAL, list-of-modes-accepted SEQUENCE OF CPT-MODE OPTIONAL, list-of-routes accepted SEQUENCE OF SCH-RouteID OPTIONAL, list-of-lines-accepted SEQUENCE OF SCH-BlockName OPTIONAL} FC-PassInstrumentType

- mag-stripe (1),
- flash-pass (2),
- transit-check (3),
- smart-card (4)

Monetary instrument definition

The monetary instrument is defined by categories set by an international standardization body.

The FC-MonetaryInstrumentType is defined as:

"A list of authorities and global currencies as specified by a 3 character ISO 4217 currency code or six character CPT-AgencyID. The ISO 4217 format includes a two based on ISO 3166 plus a one-character currency designator."

This definition supports transit agencies that mint their own tokens. The default monetary authority in the USA is cents.

FcMonetaryInstrumentDefinition ::= SEQUENCE {

id FC-MonetaryInstrumentTypeID, type FC-MonetaryInstrumentType, description FC-MonetaryInstrumentDescription, authority FC-MonetaryInstrumentAuthority, value FC-MonetaryInstrumentValue }

FC-MonetaryInstrumentType

- bill (1), --bill
- coin (2), --coin
- token (3), --token
- ticket (4), --ticket
- debit (5),
 - o debit: money is in user's acct and transferred to transit authority (TA) acct;
 - o card is external to TA
- stored-value (6),
 - --stored value: prepaid cash; internal cash instrument
 - --issued by property
- charge (7), -- charge: Federal institution extends credit
- hybrid (8), --hybrid
- transit-check (9), -- transit check
- Check-card (10) --check card

Other fare media definitions

As described above, FcFareMediaOtherDefinition describes any other type of fare media. No value is provided for this type of instrument. Special rules shall be defined by the agency and vendor for the vendor product.

FcFareMediaOtherDefinition ::=SEQUENCE { id FC-FareMediaOtherID, description FC-FareMediaOtherDescription, agency-id CPT-AgencyID OPTIONAL }

Fare instrument definition

The fare Instrument defines all the fare instruments that are permitted for paying for services. In the fare instrument definition, multiple payment methods may be defined. So, using the example cited in this section: "ten cents with a senior pass", the senior pass may be defined as a FcFareMediaOtherDefinition and ten cents as FcMonetaryInstrumentDefinition with a value of ten cents. The fare instrument definition is provided with a unique identifier (id FC-FareInstrumentID). The ID may then be inserted into the FcFareCharacterCost.list-of-fare-instrument-ids as a permissible fare instrument.

FcFareInstrument ::=SEQUENCE {

id FC-FareInstrumentID, agency-id CPT-AgencyID, monetary-instrument-type-id FC-MonetaryInstrumentTypeID OPTIONAL, ride-instrument-id FC-RideInstrumentID OPTIONAL, pass-instrument-id FC-PassInstrumentID OPTIONAL, fare-media-other-id FC-FareMediaOtherID OPTIONAL, riders-on-fi-max FC-RidersOnFIMax OPTIONAL, activation-datetime CPT-DateTime OPTIONAL, expiration-datetime FC-ExpirationDateTime OPTIONAL, list-of-fi-standards SEQUENCE OF FC-FIStandard OPTIONAL, instrument-physical-dimensions FOOTNOTE OPTIONAL } (WITH COMPONENTS {..., monetary-instrument-type-id PRESENT}] WITH COMPONENTS {..., pass-instrument-id PRESENT}] WITH COMPONENTS {..., fare-media-other-id PRESENT})

A.5.6 Identifying exceptions

There are always exceptions to the best fare policies. As such, the standard recognizes a way of defining exceptions. Exceptions are described for any combination of the fields that were described above. For example, boarding/alighting location pair, service type, mode, time period traveled, fare instrument type. The money-deduct and ride-deduct fields define the cost of the specific service defined by the other fields.

FcFareExceptionCell ::=SEQUENCE {

index FC-FareExceptionCellIndex, boarding-stop-point-id CPT-StopPointID, alighting-stop-point-id CPT-StopPointID OPTIONAL, footnote FC-Footnote, service-type SCH-ServiceType OPTIONAL, mode CPT-Mode OPTIONAL, list-of-time-period-indices SEQUENCE OF FC-TimePeriodIndex OPTIONAL, monetary-instrument-id FC-MonetaryInstrumentTypeID OPTIONAL, ride-instrument-id FC-RideInstrumentID OPTIONAL, pass-instrument-id FC-PassInstrumentID OPTIONAL, fare-media-other-id FC-FareMediaOtherID OPTIONAL, money-deduct FC-ValueDeduct OPTIONAL, ride-deduct FC-RideValueDeduct OPTIONAL

}

(WITH COMPONENTS {..., monetary-instrument-id, money-deduct PRESENT}| WITH COMPONENTS {..., ride-instrument-id, money-deduct PRESENT}| WITH COMPONENTS {..., pass-instrument-id, money-deduct PRESENT}| WITH COMPONENTS {..., fare-media-other-id, money-deduct PRESENT}| WITH COMPONENTS {..., monetary-instrument-id, ride-deduct PRESENT}| WITH COMPONENTS {..., ride-instrument-id, ride-deduct PRESENT}| WITH COMPONENTS {..., pass-instrument-id, ride-deduct PRESENT}| WITH COMPONENTS {..., pass-instrument-id, ride-deduct PRESENT}| WITH COMPONENTS {..., fare-media-other-id, ride-deduct PRESENT}]

Each cell is defined by a unique index and stored in the FcFareExceptionTable. The exception table is associated with a fare table. The thought is that the exception table is incorporated by the vendor as an exception to relevant list-of-fare-character-cost fields in the main fare table.

FcFareExceptionTable ::=SEQUENCE {

id FC-FareExceptionTableID, activation-date CPT-ActivationDate, deactivation-date CPT-DeactivationDate OPTIONAL, table-id FC-FareTableID OPTIONAL, --index identifying exception to a fare table time-period-table-id FC-TimePeriodTableID OPTIONAL, agency-id CPT-AgencyID OPTIONAL, --that accepts exception list-of-fare-cell-indices SEQUENCE OF FC-FareExceptionCellIndex}

Annex B (informative) Public transportation stop inventory sharing use case

B.1 Supported operation

B.1.1 Overview and description

Different transit organizations capture spatial and attribute information about public transportation stops using a variety of methods, with varying levels of accuracy, and for different business reasons. Quite often the geographic areas in which different agencies operate are overlapping. Even if they do not overlap, two agencies may provide services that are complimentary. There is a growing list of reasons organizations need to share information about public transportation stops. They include but are not limited to:

- Public Safety
- Avoiding duplication of effort (data collection)
- Data maintenance
- Coordination of maintenance activities
- Supporting ITS applications
- Coordination of marketing activities
- More reliable data for trip planning activities
- Cartographic output
- Ridership analysis
- System planning

Complicating the sharing of this information is the fact that different organizations define public transportation stops differently. More importantly they may capture the spatial information about the same real world feature differently. For example, for one organization, the location of a bus stop is the location of the pole holding the bus stop sign. Another organization may capture the bus stop as the location of the bus when passengers are boarding and alighting. Another possible spatial definition is a GPS coordinate that would be captured by an on board GPS receiver at varying times of the day. A fourth representation may be a linear referenced feature along a centerline network, thus tying the accuracy of the bus stop to the accuracy of the centerline network. Because of these factors it is imperative that the information in a bus stop inventory be sharable independent of the geography.

B.2 Enumeration of needs

Table B.1 lists functions that would be performed using a regional public transportation stop inventory. Many of these functions are currently being performed however a regional public transit stop database would make these functions more efficient. To be consistent with other use cases, an actor has been identified who would perform each function.

Actor	Responsibilities
Maintenance personnel	Maintain a facilities inventory of all maintainable facilities associated with public transportation stops. This would allow coordination with other maintenance operations divisions within the same geographic area
Customer service personnel	Identify stop amenities to the public for specific stops
Public safety personnel	Comprehensive maps and images of real world features when responding to emergency incidents. This would also provide the ability to plan and analyze public transit data across a large geographic area in conjunctions with emergency operations. An example would be the sniper incidents around Washington, DC, in the fall of 2002
Route planners / system planners	Plan for increased or decreased service based on the service of neighboring jurisdictions
Operations personnel	Provide necessary data to Intelligent Transportation System (ITS) applications

Table B.1 – Potential users of shared data

B.3 Functional requirements for supported operation

B.3.1 Overview

Table B.2 lists data requirements for public transportation stop data sharing. There is one indispensable requirement for a regional public transportation stop inventory: a unique identifier for the public transportation stop. The unique identifier shall be something that each organization can maintain independently. It shall not be a number or series of characters that has an alternate meaning.

Table B.2 – Detailed functional requirements

Requirements					
PTS.1 – Public transportation stop data sharing					
PTS 1.1 – A regional public transportation stop inventory shall support the sharing of stop information across multiple agencies. The information components required for this requirement are:					
A unique identifier					
Latitude / Longitude (if exists)					
Heading (if exists)					
Date last update (if exists)					
United States National Grid (USNG) Address (if exists)					
Optional data shall also be included if it exists such as the following:					
Ridership data					
Route data					
Status (active, retired, and so on)					
Amenity information					
Engineering data (sidewalk, curb, and so on)					
The format of the optional data is not overly important as long as each table of associated information is linked to the regional ID					

B.4 Mapping data requirements to current transit model

Figure B.1 shows a data requirement mapping example from the Washington Metro Area Transit Authority (WMATA). Items in bold reflect minimum requirements for this specific business application.

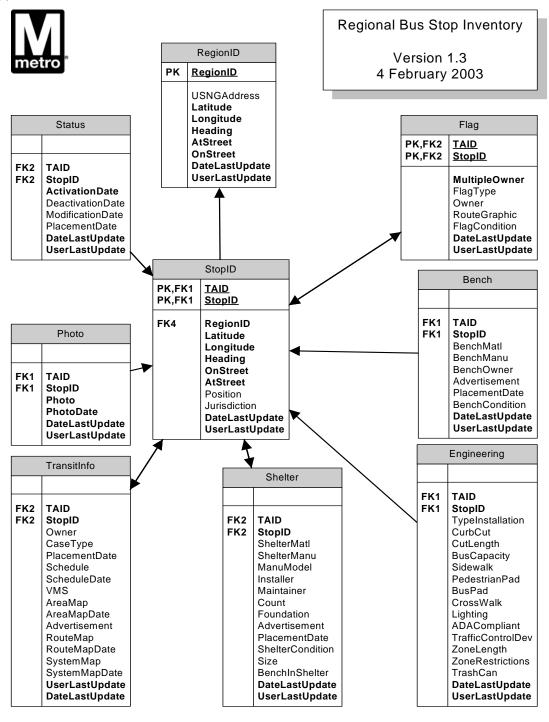


Figure B.1 – Sample regional bus stop database structure

Annex C (informative) Unplanned re-routing use case

C.1 Supported operation

C.1.1 Overview and description

As part of ongoing business operations, transit agencies often shall deviate from scheduled routings to accommodate a variety of dynamic situations. The duration for these deviations could be short or long depending on the event and the ability of the vehicle to return to the scheduled pathway. Examples of unplanned events requiring deviations from scheduled pathways include:

- Roadway accidents
- Unplanned or emergency construction activities
- Weather

These events usually result in an obstacle or blockage that closes the roadway to thru traffic necessitating the use of a detour. These detours are usually created in a spontaneous fashion, designed on the fly by field personnel, and then communicated to operations centers for ongoing use until the detour is no longer necessary. In emergency situations, first responders may designate detour routes. detour routings will likely affect the path the transit revenue vehicle takes, but they may also impact arrival/departure times, frequency of service, public transportation stop locations/accessibility, and others.

A more complex situation involves a mode-substitution in response to an unplanned reroute. In fixed guideway service (for example, rail), an outage due to vehicle blockage or guideway problems can result in the need to provide an alternate route via a different mode. Most agencies have contingency plans to accommodate such events, but the specifics of the reroute path, vehicles used, frequency of service, and so on, is dependent upon the timing, location, and longevity of the event. The mode change scenario is not within the scope of this use case.

C.1.2 Enumeration of needs

Table C.1 lists functions that are necessary to respond to unplanned reroutes. For each function, an actor has been identified who would perform the function.

Actor	Responsibilities
Field personnel (in consultation with operations center and first responders if present)	Identify appropriate detour path and new public transportation stops Identify estimated duration of detour Communicate path and public transportation stops to operations center Assist passengers needing to transfer to new mode or vehicle Identify cause and supervising agency (for example, EMS, utility, and so on) and key contact person; may also communicate duration of event. < <not in="" of="" our="" scope="" use<br="">case>> Continue to communicate unplanned event status. <<not case="" in="" of="" our="" scope="" use="">></not></not>
Vehicle	Receive and store new automated announcements, interior and exterior sign detail, and schedule adjustments

 Table C.1 – Unplanned re-routing stakeholders

Federal Geographic Data Committee Geographic Information Framework Data Content Standard Part 7d: Transportation – Transit Annex C (informative): Unplanned re-routing use case

Actor	Responsibilities				
Driver	If driver receives run card via vehicle control head (mobile data terminal), acknowledge receipt of alternative route				
	Provide verbal announcements of new public transportation stops and transfer points				
Customer information	Inform customers of detour route path and duration				
	Inform customers of changes to public transportation stop locations and times				
	Identify affected routes and specific trips				
	Provide operators with driving directions for detour route				
	Identify new patterns and routing				
Operations center	Adjust schedules for connecting services				
	Generate and provide driver and/or vehicles with new automated announcements, interior and exterior sign detail, and schedule adjustments				
	Coordinate incident response with supervising agency < <not case="" in="" of="" our="" scope="" use="">></not>				

C.2 Functional requirements for supported operation

C.2.1 Overview

The requirements for supporting the rerouting use case are:

- Identifying the changes to the transit system
- Communicating those changes to various components of the system that need it. These are expanded below in Table C.2

Table C.2 – Detailed functional requirements

	Requirements						
RR.1 – I	dentify necessary changes in scheduled paths and public transportation Stops.						
	RR 1.1 – Field personnel and the operations center shall work together to identify the optimal detour path and changes in public transportation stop locations. This requirement shall contain the following information components:						
•	Information about the incident such as location, type of incident (for example, fire, flood, and so on), estimated duration						
•	Area affected, including streets and intersections						
•	Duration of event						
•	Obstacles to walking						
•	Navigable streets						
•	Public transportation stops excluded by the event						
•	Public transportation stops created as a result of the event						

Requirements

RR 1.2 – The operations center shall identify impacts on subsequent trips for the rerouted vehicles and impacts on public transportation stops outside of the immediate area affected by the event. This may include adjusting schedules of connecting services. The information components required for this requirement are:

- Information about the incident such as location, type of incident (for example, fire, flood, and so on), estimated duration
- Area affected
- Duration of event
- Navigable streets
- Facility locations
- Additional public transportation stops and facilities excluded by the event

RR.2 - Communicate changes in schedule.

RR 2.1 – The operations center shall communicate information about schedule changes to drivers, customer information, and revenue vehicles. This information may have to be communicated via a variety of mechanisms depending on the location of the receiver and the duration of the event. For example, on-duty drivers may need to receive the information by radio or digitally over a wireless communications link, whereas drivers who will experience the change in service on subsequent days may receive the information via hardcopy. The information components required for this requirement are:

- Information about the incident such as location, type of incident (for example, fire, flood, and so on)
- Area affected
- Estimated duration of event
- Public transportation stops excluded by the event
- Public transportation stops created as a result of the event
- Driving instructions
- Revenue vehicles affected

In addition, if the reroute is of sufficient duration to incorporate within the information and scheduling systems within the agency, then the following information is required:

- Ordered set of street segments making up the reroute path.
- Ordered set of TimePoints making up the reroute path.
- Ordered set of public transportation stops making up the reroute path
- New times or time offsets at affected TimePoints
- New signage for the vehicle
- New voice announcements for the vehicle

Requirements

RR 2.2 – The customer information systems shall communicate information about schedule changes to customers. The information components required for this requirement are:

- -- On Bus and Off Bus:
 - Information about the incident such as location, type of incident (for example, fire, flood, and so on)
 - Area affected
 - Estimated duration of event
 - Public transportation stops excluded by the event
 - Public transportation stops created as a result of the event
- -- On Bus Customer Information Service (CIS)
 - Announcement of public transportation stops excluded by the event
 - Announcements of new/temporary public transportation stops created as a result of the event
 - Announce estimated delay
 - New signage for the vehicle

-- Off Bus CIS

- Routes affected
- Estimated delay (new times) at public transportation stops
- Alternate path (with new/temporary public transportation stops)

C.3 Mapping data requirements to current transit model

See Table C.3 below for the data entities necessary for the rerouting use case include block, trip, route, public transportation stop, facility, and road segment.

Requirement	Model Element
Obstacles to walking	TranSeg
Navigable streets	TranSeg
Excluded public transportation stops	TranSeg, TransitStop, Facility, Block
New public transportation stops	TranSeg, TransitStop, Facility, Block
Driving instructions	TranSeg
Affected vehicles	Block, PTVehicle
New times (or delay offset)	Trip, TimePoint,
New signage	Block, PTVehicle
New announcement and sign triggers	Pattern (if duration of event is sufficiently long)

 Table C.3 – Data requirements for rerouting use case

Annex D (informative) Address extension to the transit model

This annex describes a general approach to support the transmittal of address information relevant to the operation of transit systems. Terms such as "road segment" are used in a general sense in this annex and do not necessarily refer to features in Part 7: Tansportation Base, Part 7c: Roads, or Part 7d: Transit. In future versions of this standard, the methods and terms described here will be integrated with the transportation model as a whole.

Address information is useful for several transit-related applications, such as itinerary planning and facility management. Addresses may define the location of customers, their designations, and the fixed facilities used by transit service providers. Specifically, the transit model needs to support transmittal of physical addresses, such as those defined by the proposed FGDC Street Address Data Standard for situs or delivery locations. This requirement includes a need to also identify the location of these physical addresses on the transportation system utilized by the transit service. The traditional approach, and the one supported by this proposal, is to define the addresses that exist along a particular street segment. This information is later used to place a physical address along the street segment.

Address segments represent a contiguous portion of a named street with a continuous range of physical address numbers and a single combination of street name, postal community, State, and postal code. An address segment applies to all or part of a road segment. There may be one or more address segment records for each road segment feature. This model means that a single address segment cannot span multiple road segment features, and that each road segment feature can be subdivided into multiple, logically separate address ranges.

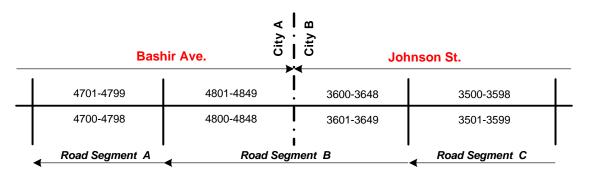


Figure D.1 – Illustration of address segment information requirements

Figure D.1 shows four address segments covering three city blocks, each of which is represented in the local road database using a single road segment feature. Addressing jurisdiction changes in the middle of road segment B. (Jurisdiction could be stored in the road database using road segment linear events.) Each side of the road has its own address range, usually odd numbers on one side and even numbers on the other. In this example, street names and address segment patterns are unique to each city. Most street address database implementations use a single record with left- and right-side address ranges. However, a more robust data transfer mechanism would be constructed such that each address segment record contained the address range information applied to a single side of the road. This more complex structure allows the transmission of completely different address segment characteristics when, say, there are separate controlling political jurisdictions for each side of the road. Addresses are located by GIS software along address segments using a process called geocoding. In this process, the first step is to find the address segment on which the subject address should be located. For example, given an address of 3521 Johnson St., the geocoding processor would search the database to find one or more address segments that could include this value. The data in Figure D.1 provide at least one candidate, 3501-3599 Johnson St., which applies to the left side of road segment C. (Geocoding processors identify the odd and even sides of the street addressing system by examining the terminal address range values and/or by referencing a field that indicates which side of the road contains odd numbers.) The second step is to do straight-line interpolation using the relative position of the subject address along a segment, assuming an equidistant spacing of address values. Thus, the address of 3521 Johnson St. would be placed at a position equal to the address's offset distance along the address segment, as determined by:

Location = (Address – First Segment Address) / (Address Segment Range)

- = (3521 3501) / (3599 3501)
- = 20/98, or 20.4% from the start of the address segment

The first problem for the transit MAT model, with regard to accommodating the transfer of address information, is to provide the means for transmitting the address segment records and the addresses, which requires two object classes. Figure D.2 illustrates the attributes required to express the address segment (AddressSeg) and address (Address) information exchange needed under virtually all circumstances. The optionality of fields is expressed using the UML [0..1] notation. The first "ID" field shown in both classes may be used as a relational key in database implementations.

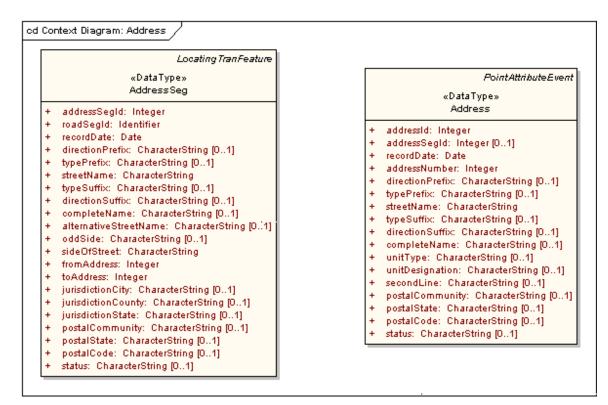


Figure D.2 – Suggested information attributes for AddressSeg and Address classes

As reflected in the mandatory fields, the address information transfer mechanism requires that road segment features exist if AddressSeg records are conveyed, but that Address records alone may be transmitted. See Part 7: Transportation Base and Part 7c: Roads for model feature classes that correspond to road segments, from which TransitSegment features may be derived. Figure D.3 shows an illustrative example of this portion of the transit MAT data model with the two address classes. RoadSeg (shorthand for road segment), RoadSubSeg (shorthand for road subsegment), and TransitSegment (shorthand for a transit segment or path) are hypothetical feature classes that may include geometry. A TransitPath may be constructed from one or more RoadSubSeg features, each of which is part or all of a RoadSubSeg and/or an AddressSeg using a LinearAttributeEvent. Address classes extend Part 7c: Roads, but are required to meet transit model application needs.

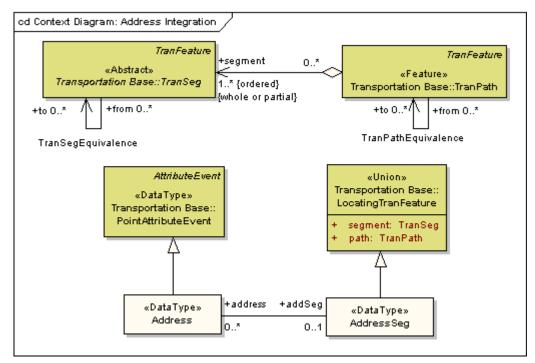


Figure D.3 – Data model extension to support address information transmission

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
213	AddressSeg				< <datatype>></datatype>	Lines 214-235
214	addressSegId	Unique identifier for the address segment. An address segment is a portion of a named street with a continuous range of address numbers and a single combination of street name, postal community name, State, and postal code. A new address segment is created when any one of these attributes changes. Hundred-number block ranges that reset incrementally at intersections often additionally define address segments. Separate address segments may describe left and right sides of a named street	Μ	1	Integer	
215	roadSegId	Unique identifier for the roadway segment on which the address segment is located. Address segments cannot span multiple road segments, but multiple address segments may reference a single road segment	М	1	Identifier	
216	recordDate	Date the record was created	М	1	Date	
217	directionPrefix	Cardinal direction used to differentiate one portion of a named street from another based on its displacement from a central address cross street	Ο	1	CharacterString	North, east, south, west, northeast, northwest, southeast, and southwest; or their one- and two- character equivalents

Table D.1 – Data dictionary for AddressSeg and Address

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
218	typePrefix	Means of differentiating one kind of road from another, used to make otherwise duplicative names unique	0	1	CharacterString	Postal Addressing Standards, Publication 28, U.S. Postal Service, November 2000, Appendix C defines the domain, which includes such values as ST, AVE, DR, LANE, CIR, BLVD, and LOOP
219	streetName	Primary street name element, such as "Main" or "23rd	М	1	CharacterString	
220	typeSuffix	Means of differentiating one kind of road from another, used to make otherwise duplicative names unique and coming after the primary street name component	0	1	CharacterString	Postal Addressing Standards, Publication 28, U.S. Postal Service, November 2000, Appendix C defines the domain, which includes such values as ST, AVE, DR, LANE, CIR, BLVD, and LOOP
221	directionSuffix	Cardinal direction used to differentiate one portion of a named street from another based on its displacement from a central address cross street and coming after the primary street name component	0	1	CharacterString	North, east, south, west, northeast, northwest, southeast, and southwest; or their one- and two- character equivalents
222	completeName	The full text of the street name with all applicable prefixes and suffixes, such as "N Main St." Street names are typically decomposed in address databases into several constituent elements, expressed mainly as various prefixes and suffixes to the basic street name, as shown above. This field supports the transfer of a full street name as a single value	Ο	1	CharacterString	

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
223	alternativeStreetName	Another name for the street (see completeName)	0	1	CharacterString	
224	oddSide	The side of the street, as determined by applying the direction of increasing address numbers, on which odd numbered addresses are located. Used by some geocoding applications to properly place addresses along the address segment in lieu of using left- and right-side address ranges	0	1	CharacterString	Left, right, both, none, and unknown
225	sideOfStreet	Side of a street to which this address-segment record applies. There is no implicit requirement that a matching odd-numbered side record balance an even-numbered side of the street record; both sides may contain odd- or even-numbered addresses	М	1	CharacterString	Left, right, and both
226	fromAddress	Numeric value of the address that corresponds to the beginning point of the street segment. This is not necessarily the lowest address value however it can be. In a GIS each line has a beginning point and an end point. The directionality of the line is based on these points. The address range values correspond to this directionality. In Figure D.1, the fromAddress of road segment C would be 3599. In many systems, the fromAddress is broken down into both leftFromAddress and rightFromAddress	Μ	1	Integer	

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
227	toAddress	Numeric value of the address that corresponds to the ending point of the street segment. This is not necessarily the highest address value, however it can be. In a GIS each line has a beginning point and an end point. The directionality of the line is based on these points. The address range values correspond to this directionality. In Figure D.1, the toAddress of road segment C would be 3500. In many systems the toAddress is broken down into both leftToAddress and rightToAddress	М	1	Integer	
228	jurisdictionCity	City with addressing jurisdiction for this address segment	0	1	CharacterString	May be the official political unit's text name or the FIPS code value used to represent this entity
229	jurisdictionCounty	County with addressing jurisdiction for this address segment. The term "county" includes parishes, townships, and similar terms, where applicable	0	1	CharacterString	May be the official political unit's text name or the FIPS code value used to represent this entity
230	jurisdictionState	The State with addressing jurisdiction for this address segment. It is anticipated that only one of the three jurisdiction fields would be valid for any single address segment	0	1	CharacterString	Domain may be the official political unit's text name or the FIPS code value used to represent this entity
231	postalCommunity	Name assigned by the postal authority for the general location within which the address information shall be unique. Postal community may differ from the name of the city with jurisdiction on this address segment	0	1	CharacterString	

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
232	postalState	Name assigned by the postal authority for the State within which the address is located for delivery purposes. The term "State" includes provinces and similar terms, where applicable	0	1	CharacterString	Two-character State (in the U.S.) and province (in Canada) abbreviations
233	postalCode	General address location identifier used by the postal agency. In the United States, this is known as the ZIP code, and consists of five mandatory numbers and an optional "ZIP+4" extension consisting of a hyphen and four numbers	0	1	CharacterString	
234	status	Status of the address segment record	0	1	CharacterString	Active, proposed, alternative, and retired
235	Role name: address		0	*	< <datatype>> Address</datatype>	
236	Address				< <datatype>></datatype>	Lines 237-254
237	addressId	Unique identifier for an address record. An address, in the context of this model, is a physical address (also known as delivery or situs address), as defined in the proposed FGDC Street Address Data Standard	М	1	Integer	

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
238	addressSegId	Unique identifier for the address segment. An address segment is a portion of a named street with a continuous range of address numbers and a single combination of street name, postal community name, State, and postal code. A new address segment is created when any one of these attributes changes. Hundred-number block ranges that reset incrementally at intersections often additionally define address segments. Separate address segments may describe left and right sides of a named street	М	1	Integer	
239	recordDate	Date the record was created	Μ	1	Date	
240	addressNumber	Portion of a street address that is not the street name, usually consisting of whole integer numbers with occasional fractional and alphabetic extensions. Address numbers generally identify an entire structure for the purposes of mail and package delivery	М	1	Integer	
241	directionPrefix	Cardinal direction used to differentiate one portion of a named street from another based on its displacement from a central address cross street	0	1	CharacterString	North, east, south, west, northeast, northwest, southeast, and southwest; or their one- and two- character equivalents

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
242	typePrefix	Means of differentiating one kind of road from another, used to make otherwise duplicative names unique	0	1	CharacterString	Postal Addressing Standards, Publication 28, U.S. Postal Service, November 2000, Appendix C defines the domain, which includes such values as ST, AVE, DR, LANE, CIR, BLVD, and LOOP
243	streetName	Primary street name element, such as "Main" or "23rd	М	1	CharacterString	
244	typeSuffix	Means of differentiating one kind of road from another, used to make otherwise duplicative names unique and coming after the primary street name component	0	1	CharacterString	Postal Addressing Standards, Publication 28, U.S. Postal Service, November 2000, Appendix C defines the domain, which includes such values as ST, AVE, DR, LANE, CIR, BLVD, and LOOP
245	directionSuffix	Cardinal direction used to differentiate one portion of a named street from another based on its displacement from a central address cross street and coming after the primary street name component	0	1	CharacterString	North, east, south, west, northeast, northwest, southeast, and southwest; or their one- and two- character equivalents
246	completeName	The full text of the street name with all applicable prefixes and suffixes, such as "N Main St." Street names are typically decomposed in address databases into several constituent elements, expressed mainly as various prefixes and suffixes to the basic street name, as shown above. This field supports the transfer of a full street name as a single value	0	1	CharacterString	

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
247	unitType	Type of mail delivery unit within a structure	0	1	CharacterString	Apartment, suite, unit, office, mail station, and building, plus their equivalent abbreviations
248	unitDesignation	Identifier for the delivery unit, such as a letter or number that is unique within the structure(s) reached through the combination of an address number and complete street name location. May be used even when unitType is [null] in order to convey address information; for example, for duplexes identified with a letter suffix appended to the numeric address conveyed in addressNumber	Ο	1	CharacterString	
249	secondLine	Additional line for supplemental delivery address information, such as the floor on which an office is located	0	1	CharacterString	
250	postalCommunity	Name assigned by the postal authority for the general location within which the address information shall be unique. Postal community may differ from the name of the city with jurisdiction on this address segment	0	1	CharacterString	
251	postalState	Name assigned by the postal authority for the State within which the address is located for delivery purposes. The term "State" includes provinces and similar terms, where applicable	0	1	CharacterString	Two-character State (in the U.S.) and province (in Canada) abbreviations

Line	Name/Role Name	Definition	Obligation/ Condition	Maximum Occurrence	Data Type	Domain
252	postalCode	General address location identifier used by the postal agency. In the United States, this is known as the ZIP code, and consists of five mandatory numbers and an optional "ZIP+4" extension consisting of a hyphen and four numbers	Ο	1	CharacterString	
253	status	Status of the address segment record	Ο	1	CharacterString	Active, proposed, alternative, and retired
254	Role name: addSeg		0	1	< <datatype>> AddressSeg</datatype>	

Annex E (informative) Bibliography

The following documents contain provisions that are relevant to this part of the Framework Data Content Standard. Informative references applicable to two or more transportation parts only are listed in Annex C of the Transportation Base (Part 7). Annex D of the Base Document (Part 0) lists informative references applicable to two or more of the parts of the standard, including the transportation parts. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document applies.

ANSI and ISO standards may be purchased through the ANSI eStandards Store at <u>http://webstore.ansi.org/ansidocstore/default.asp</u>, accessed October 2006.

Federal Geographic Data Committee, Street address data standard, <u>http://www.fgdc.gov/standards/projects/FGDC-standards-projects/street-</u> <u>address/index_html/?searchterm=Address%20Data%20Content%20standard</u>, accessed October, (forthcoming)

Transit Standards Consortium, 2001, Bus stop inventory best practices and recommended procedures

NTCIP 1400:2000, Transit communications interface profile framework, Version 1.04, Draft NTCIP 1400 Amendment 1, September 2002

NTCIP 1401:2000, Standard on common public transportation (CPT) objects, Version 1.02, Draft NTCIP 1401 Amendment 1, September 2002

NTCIP 1402:2000, Standard on incident management (IM) objects, Version 1.02, Draft NTCIP 1402 Amendment 1, September 2002

NTCIP 1403:2000, Standard on passenger information (PI) objects, Version 1.02, Draft NTCIP 1403 Amendment 1, September 2002

NTCIP 1404:2000, Standard on scheduling/runcutting (SCH) objects, Version 1.02, Draft NTCIP 1404 Amendment 1, September 2002

NTCIP 1405:2000, Standard on spatial representation (SP) objects, Version 1.02, Draft NTCIP 1405 Amendment 1, September 2002

NTCIP 1406:2001, Standard on on-board (OB) objects, Version 1.02, Draft NTCIP 1406 Amendment 1, September 2002

NTCIP 1407:2001, Standard on Control Center (CC) objects, Version 1.02, Draft NTCIP 1407 Amendment 1, September 2002

U.S. Postal Service, 2000, Publication 28 – Postal addressing standards